The Technical Parameters of Seaweed Biostimulant Spray Application as a Factor in the Economic Viability of Soybean Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Droplet Size and Coverage
2.3. Physical Properties of the Spray Liquid
2.4. Yield, Biometrics, and Economic Viability
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Li, S.; Wu, X.; Wang, Y.; Kang, F. Analysis of Droplet Size Uniformity and Selection of Spray Parameters Based on the Biological Optimum Particle Size Theory. Environ. Res. 2022, 204, 112076. [Google Scholar] [CrossRef]
- Griesang, F.; Ferreira, M.D.C.; Spadoni, A.B.; Della Vechia, J.F.; Santos, R.T.D.S.; dos Santos, C.A. How do the Droplet Spectrum Uniformity and Spray Volume of Flat-Fan Nozzles Influence Fungicide Spray Distribution Quality in Soybeans? Eng. Agríc 2022, 42, e20210122. [Google Scholar] [CrossRef]
- Sayinci, B.; Demir, B.; Açik, N. Comparison of Spray Nozzles in Terms of Spray Coverage and Drop Distribution Uniformity at Low Volume. Turkish J. Agric. For. 2020, 44, 262–270. [Google Scholar] [CrossRef]
- Hoek, A.C.; Malekpour, S.; Raven, R.; Court, E.; Byrne, E. Towards environmentally sustainable food systems: Decision-making factors in sustainable food production and consumption. Sustain. Prod. Consum. 2021, 26, 610–626. [Google Scholar] [CrossRef]
- Kaur, H.; Chahal, S.; Jha, P.; Pandey, D.K.; Arencibia, A.D.; Kumar, V. Biostimulants, the cinderella for plant development. In Biostimulants for Crops from Seed Germination to Plant Development; Academic Press: London, UK, 2021; pp. 61–72. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj (accessed on 11 December 2022).
- Du Jardin, P.; Xu, L.; Geelen, D. Agricultural Functions and Action Mechanisms of Plant Biostimulants (PBs). In The Chemical Biology of Plant Biostimulants; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 1–30. [Google Scholar] [CrossRef]
- Gupta, S.; Hrdlička, J.; Ngoroyemoto, N.; Nemahunguni, N.K.; Gucký, T.; Novák, O.; Kulkarni, M.G.; Doležal, K.; van Staden, J. Preparation and Standardisation of Smoke-Water for Seed Germination and Plant Growth Stimulation. J. Plant Growth Regul. 2020, 39, 338–345. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Tinti, A.; Nardi, S. Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism. Molecules 2016, 21, 205. [Google Scholar] [CrossRef]
- Szparaga, A.; Kocira, S.; Kapusta, I.; Zaguła, G. Prototyping extracts from Artemisia absinthium L. for their biostimulating properties yield-enhancing, and farmer income-increasing properties. Ind. Crop. Prod. 2021, 160, 113125. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Hara, P.; Treder, K.; Findura, P.; Bartoš, P.; Filip, M. Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation. Sci. Rep. 2020, 10, 17759. [Google Scholar] [CrossRef]
- Kocira, A.; Kocira, S.; Stryjecka, M. Effect of Asahi SL application on common bean yield. Agric. Agric. Sci. Proc. 2015, 7, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Cardarelli, M.; Bonini, P.; and Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Godlewska, A.; Ciepiela, G. Carbohydrate and lignin contents in perennial ryegrass (Lolium perenne L.) treated with sea bamboo (Ecklonia maxima) extract against the background of nitrogen fertilisation regime. Appl. Ecol. Environ. Res. 2020, 18, 6087–6097. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Garcia-Perez, P.; Cardarelli, M.; Senizza, B.; Miras-Moreno, B.; Lucini, L. Plant biostimulants from seaweeds or vegetal proteins enhance the salinity tolerance in greenhouse lettuce by modulating plant metabolism in a distinctive manner. Sci. Hortic. 2022, 305, 111368. [Google Scholar] [CrossRef]
- Kocira, A.; Lamorska, J.; Kornas, R.; Nowosad, N.; Tomaszewska, M.; Leszczyńska, D.; Kozłowicz, K.; Tabor, S. Changes in Biochemistry and Yield in Response to Biostimulants Applied in Bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Szparaga, A.; Kuboń, M.; Kocira, S.; Czerwińska, E.; Pawłowska, A.; Hara, P.; Kobus, Z.; Kwaśniewski, D. Towards Sustainable Agriculture—Agronomic and Economic Effects of Biostimulant Use in Common Bean Cultivation. Sustainability 2019, 11, 4575. [Google Scholar] [CrossRef] [Green Version]
- Mannino, G.; Campobenedetto, C.; Vigliante, I.; Contartese, V.; Gentile, C.; Bertea, C.M. The Application of a Plant Biostimulant Based on Seaweed and Yeast Extract Improved Tomato Fruit Development and Quality. Biomolecules 2020, 10, 1662. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Nowosad, N.; Kocira, A.; Kornas, R. Profitability of using biostimulants in cultivation of bean (Phaseolus vulgaris L.) ‘Orzeł’. Agron. Sci. 2020, 75, 17–28. [Google Scholar] [CrossRef]
- Lodwik, D.; Pietrzyk, J.; Malesa, W. Analysis of Volume Distribution and Evaluation of the Spraying Spectrum in Terms of Spraying Quality. Appl. Sci. 2020, 10, 2395. [Google Scholar] [CrossRef]
- Węgrzyn, A.; Parafiniuk, S. Postęp techniczny w zakresie aplikacji pestycydów. Stud. Rap. IUNG-PIB 2019, 60, 83–102. [Google Scholar]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Krawczuk, A.; Parafiniuk, S.; Przywara, A.; Huyghebaert, B.; Rabier, F.; Limbourg, Q.; Mostade, O.; Kocira, S. Technical Parameters of Biostimulant Spraying a Determinant of Biometric Traits and Yield of Soybean Seeds. Agric. Eng. 2021, 25, 171–179. [Google Scholar] [CrossRef]
- Wawrzosek, J.; Parafiniuk, S. Optimization of the Opening Shape in Slot Spray Nozzles in a Field Boom Sprayer. Sustainability 2021, 13, 3291. [Google Scholar] [CrossRef]
- Griesang, F.; Spadoni, A.B.D.; Urah Ferreira, P.H.; da Costa Ferreira, M. Effect of Working Pressure and Spacing of Nozzles on the Quality of Spraying Distribution. Crop Prot. 2022, 151, 105818. [Google Scholar] [CrossRef]
- Ozkan, H.E. Reducing Spray Drift; Ohio State University Extension Service, Publication AEX: Columbus, OH, USA, 2000; pp. 816–900. [Google Scholar]
- Lodwik, D.; Pietrzyk, J. Evaluation of resistance to spray drift of selected sprayer nozzles in the aspect of non-uniformity in transverse distribution of liquid. Teka. Comm. Mot. Power Ind. Agric. 2017, 17, 65–70. [Google Scholar]
- Ozkan, H.E.; Derksen, R.C. Effectiveness of TurboDrop and Turbo TeeJet Nozzles in Drift Reduction; Ohio State University Extension Service, Publication AEX: Columbus, OH, USA, 1998; pp. 524–598. [Google Scholar]
- Nuyttens, D.; Taylor, W.A.; de Schampheleire, M.; Verboven, P.; Dekeyser, D. Influence of nozzle type and size on drift potential by means of different wind tunnel evaluation methods. Biosyst. Eng. 2009, 103, 271–280. [Google Scholar] [CrossRef]
- Bai, G.; Nakano, K.; Mizukami, T.; Miyahara, S.; Ohashi, S.; Kubota, Y.; Takizawa, K.-I.; Yan, H. Characteristics and classification of Japanese nozzles based on relative spray drift potential. Crop. Prot. 2013, 46, 88–93. [Google Scholar] [CrossRef]
- Lipiński, A.J.; Lipiński, S.; Burg, P.; Sobotka, S.M. Influence of the Instability of the Field Crop Sprayer Boom on the Spraying Uniformity. J. Agric. Food Res. 2022, 10, 100432. [Google Scholar] [CrossRef]
- Gajtkowski, A. Technika Ochrony Roślin; Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego: Poznań, Poland, 2000; p. 257. [Google Scholar]
- Milanowski, M.; Subr, A.; Parafiniuk, S.; Różańska-Boczula, M. The Effect of Adjuvant Concentration on Changes of Spray Characteristics and Spraying Parameters for Selected Types of Nozzles. Agric. Eng. 2022, 26, 119–131. [Google Scholar] [CrossRef]
- Baetens, K.; Ho, Q.T.; Nuyttens, D.; de Schampheleire, M.; Endalew, A.M.; Hertog, M.L.A.T.M.; Nicolaï, B.; Ramon, H.; Verboven, P. A validated 2-D diffusion–advection model for prediction of drift from ground. Atmos. Environ. 2009, 43, 1674–1682. [Google Scholar] [CrossRef]
- Subr, A.; Parafiniuk, S.; Milanowski, M.; Krawczuk, A.; Kachel, M. Study of deposited spray quality of spraying agents with different physical properties. Plant Arch. 2020, 20, 6109–6114. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Horwitz, W., Ed.; Association of Official Analytical Chemists (AOAC) International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kocira, S.; Szparaga, A.; Krawczuk, A.; Bartoš, P.; Zaguła, G.; Plawgo, M.; Černý, P. Plant Material as a Novel Tool in Designing and Formulating Modern Biostimulants—Analysis of Botanical Extract from Linum usitatissimum L. Materials 2021, 14, 6661. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, H.; Ozkan, H.E.; Derksen, R.C.; Krause, C.R. Evaporation and deposition coverage area of droplets containing insecticides and spray additives on hydrophilic, hydrophobic, and crabapple leaf surfaces. Trans. ASAE 2009, 52, 39–49. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, H.; Ozkan, H.E.; Bagley, W.E.; Krause, C.R. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants. Pest Manag. Sci. 2011, 67, 842–851. [Google Scholar] [CrossRef]
- He, Y.; Xiao, S.; Wu, J.; Fang, H. Influence of Multiple Factors on the Wettability and Surface Free Energy of Leaf Surface. Appl. Sci. 2019, 9, 593. [Google Scholar] [CrossRef] [Green Version]
- Lopes, D.L.; dos Reis, E.F. Spectrum of spray droplets with different nozzles and adjuvants. Rev. Fac. Cien. Agrar. 2020, 15, e6552. [Google Scholar] [CrossRef]
- Tanase, C.; Bujor, O.-C.; Popa, V.I. Phenolic Natural Compounds and Their Influence on Physiological Processes in Plants. In Polyphenols in Plants, 2nd ed.; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–58. [Google Scholar] [CrossRef]
- Kumar, N.A.; Vanlalzarzova, B.; Sridhar, S.; Baluswami, M. Effect of liquid seaweed fertilizer of Sargassum wightii Grev. on the growth and biochemical content of green gram (Vigna radiata (L.) R. Wilczek). Recent Res. Sci. Technol. 2012, 4, 40–45. [Google Scholar]
- Latique, S.; Chernane, H.; Mansori, M.; El Kaoua, M. Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris variety Paulista) under hydroponic system. Eur. Sci. J. 2013, 9, 174–191. [Google Scholar]
- Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Wójtowicz, A.; Bronowicka-Mielniczuk, U.; Koszel, M.; Findura, P. Modeling Biometric Traits, Yield and Nutritional and Antioxidant Properties of Seeds of Three Soybean Cultivars Through the Application of Biostimulant Containing Seaweed and Amino Acids. Front. Plant Sci. 2018, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Basile, B.; Brown, N.; Valdes, J.M.; Cardarelli, M.; Scognamiglio, P.; Mataffo, A.; Rouphael, Y.; Bonini, P.; Colla, G. Plant-Based Biostimulant as Sustainable Alternative to Synthetic Growth Regulators in Two Sweet Cherry Cultivars. Plants 2021, 10, 619. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoso, D.; Gunawan, A.; Budiani, A.; Sari, D.A. Priyono Plant biostimulant to improve crops productivity and planters profit. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 183, p. 012017. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Głuszczak, B.; Mystkowska, I. Ekonomiczne uzasadnienie stosowania herbicydów i biostymulatorów w uprawie ziemniaków jadalnych. Rocz. Nauk. Stow. Ekon. Rol. Agrobiz. 2018, 20, 169–173. [Google Scholar]
- Mystkowska, I. Wpływ zróżnicowanej techniki odchwaszczania i stosowania biostymulatorów na efektywność ekonomiczną uprawy ziemniaków jadalnych. Rocz. Nauk. Stow. Ekon. Rol. Agrobiz. 2017, 19, 190–193. [Google Scholar]
Liquid | Physical Properties | Coverage [%] | |||
---|---|---|---|---|---|
Surface Tension (mN m−1) | Area (mm2) | Volume (µL) | |||
AP12003 | 6MS03C | ||||
Water | 71.46 ± 0.84 a | 43.41 ± 0.73 a | 28.83 ± 0.67 a | 32.76 ± 3.32 b | 22.56 ± 2.31 b |
Seaweed extract | 64.35 ± 0.93 b | 38.62 ± 0.69 b | 24.55 ± 0.72 b | 65.79 ± 4.92 a | 42.12 ± 2.42 a |
Characteristic | 2020 | 2021 | Mean 2020–2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | Seaweed Extract | Control | Seaweed Extract | Control | Seaweed Extract | ||||
AP12003 | 6MS03C | AP12003 | 6MS03C | AP12003 | 6MS03C | ||||
First-pod height [cm] | 9.8 ± 1.32 b | 13.4 ± 1.49 a | 11.3 ± 1.21 a | 10.4 ± 1.05 b | 14.1 ± 1.23 a | 11.8 ± 1.33 a | 10.1 ± 1.74 b | 13.8 ± 1.83 a | 11.6 ± 1.91 a |
Plant height [cm] | 88.8 ± 3.35 c | 108.9 ± 3.56 a | 98.6 ± 3.32 b | 80.6 ± 3.42 b | 103.9 ± 3.08 a | 96.3 ± 3.26 a | 84.7 ± 5.42 c | 106.4 ± 4.05a | 97.4 ± 3.21 b |
Pod count | 15.3 ± 1.04 a | 17.5 ± 1.24 a | 17.2 ± 1.11 a | 14.0 ± 1.05 b | 16.9 ± 1.40 a | 16.4 ± 0.92 a | 14.6 ± 1.17 b | 17.2 ± 1.23 a | 16.8 ± 0.93 a |
1000 seed weight [g] | 208.0 ± 2.71 a | 198.4 ± 3.23 b | 205.3 ± 2.46 ab | 204.3 ± 2.22 a | 194.5 ± 2.56 b | 202.4 ± 2.54 a | 206.2 ± 3.00 a | 196.5 ± 3.37 b | 203.8 ± 2.77 a |
Yield [g m−2] | 273.1 ± 11.78 b | 337.7 ± 17.59 a | 325.2 ± 8.79 a | 261.5 ± 15.76 b | 364.7 ± 15.64 a | 346.8 ± 7.14 a | 267.3 ± 13.99 b | 351.2 ± 20.98 a | 336.0 ± 13.83 a |
Characteristic | 2020 | 2021 | Mean 2020–2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | Seaweed Extract | Control | Seaweed Extract | Control | Seaweed Extract | ||||
AP12003 | 6MS03C | AP12003 | 6MS03C | AP12003 | 6MS03C | ||||
Total protein [%] | 32.52 ± 1.36 b | 36.41 ± 1.78 a | 35.74 ± 2.03 ab | 33.16 ± 2.08 b | 38.34 ± 2.73 a | 37.13 ± 2.98 ab | 32.84 ± 2.19 b | 37.38 ± 3.16 a | 36.44 ± 3.16 b |
Total fat [%] | 17.21 ± 1.42 a | 17.79 ± 1.55 a | 17.24 ± 1.76 a | 17.63 ± 1.36 a | 17.28 ± 1.83 a | 17.81 ± 2.01 a | 17.42 ± 1.62 a | 17.04 ± 2.14 a | 17.53 ± 2.31 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawczuk, A.; Huyghebaert, B.; Rabier, F.; Parafiniuk, S.; Przywara, A.; Koszel, M.; Lorencowicz, E.; Kocira, S. The Technical Parameters of Seaweed Biostimulant Spray Application as a Factor in the Economic Viability of Soybean Production. Appl. Sci. 2023, 13, 1051. https://doi.org/10.3390/app13021051
Krawczuk A, Huyghebaert B, Rabier F, Parafiniuk S, Przywara A, Koszel M, Lorencowicz E, Kocira S. The Technical Parameters of Seaweed Biostimulant Spray Application as a Factor in the Economic Viability of Soybean Production. Applied Sciences. 2023; 13(2):1051. https://doi.org/10.3390/app13021051
Chicago/Turabian StyleKrawczuk, Anna, Bruno Huyghebaert, Fabienne Rabier, Stanisław Parafiniuk, Artur Przywara, Milan Koszel, Edmund Lorencowicz, and Sławomir Kocira. 2023. "The Technical Parameters of Seaweed Biostimulant Spray Application as a Factor in the Economic Viability of Soybean Production" Applied Sciences 13, no. 2: 1051. https://doi.org/10.3390/app13021051
APA StyleKrawczuk, A., Huyghebaert, B., Rabier, F., Parafiniuk, S., Przywara, A., Koszel, M., Lorencowicz, E., & Kocira, S. (2023). The Technical Parameters of Seaweed Biostimulant Spray Application as a Factor in the Economic Viability of Soybean Production. Applied Sciences, 13(2), 1051. https://doi.org/10.3390/app13021051