Transient Responses of Repeated Transverse Impacts on Beams
Abstract
:1. Introduction
2. Contact Force Formula
- (1)
- As the solutions of and in Stronge model [40] cannot ensure the continuity of contact force at the beginning of the unloading phase, modifications are presented by assuming the continuity of the contact force at the beginning of the unloading phase, i.e., the contact force at the beginning of the unloading phase is equal to the maximum contact force ,Substituting Equation (2), i.e., the geometrical similarity [33],
- (2)
- For repeated impacts, the reloading phase happens on the previously deformed contact are, which could be divided into two sub-phases. As specified in CYM model [9], the first reloading sub-phase follows the previous unloading polynomial when the indentation is below the maximum indentation of the previous impact; the second reloading sub-phase follows the elastic-plastic/fully-plastic phase when the indentation exceeds the maximum indentation of the previous impact. For the models that do not consider the reloading phase, it is assumed that they have the same reloading process based on the simulation results of Etsion et al. [42].
Models | Elastic Loading Phase | Elastic-Plastic Loading Phase | Unloading Plastic Loading Phase | |
Hertz [1] | F = 4E*(R*)0.5δ1.5/3 1/E* = (1 − υs2)/Es + (1 − υb2)/Eb 1/R* = 1/Rs + 1/Rb | F = 4E*(R*)0.5δ1.5/3 | ||
UC [39] | δ < δY: F = πEsRsδ2/h δY = σYh/Eb | δ δY: F = πRsσY(2δ − δY) | F = πRsEb(δ2 − δr2)/h δr = δm − δY Re* = (3Fm/4E*)2/(δm − δr)3 | |
MYC [44] | δ < δp: F = Khδ1.5 Kh = 4E*(R*)0.5/3 δp = 9π2pY2R*/(16E*2) pY = 1.95σYh | δ δp: F = 1.5Kh(δ − δp) + Khδp1.5 | F = Fm((δ − δr)/(δm − δr))1.5 δr = δm-δY(2δm/δY − 1)0.5 Re* = (δm − δr)R*/δY | |
CYM [9] | δY = 0.68π2R*σYh2/(E*)2 | δ 0: F = 5.62πR*σYhδ p0 = 2.8σY, | F(δ) = Fm(δ − δr)/(δm − δr) δr = δm − δY(2δm/δY − 1)0.5, Re* = (δm − δr)/δY | |
MJG [27] | δ < 1.9δY: F = 4E*(R*)0.5δ1.5/3 δY = (πCjσYb/2E*)2R* Cj = 1.295e0.736υb | δ 1.9δY: F = FY(4HG()(δ/δY)1.1/CjσYh +) HG/σY = 2.84 − 0.92(1 − cos(πa/R*)), B = 0.14 a = (R*δY(δ/1.9δY)B)0.5, FY = 4(R*/E*)2(πCjσYh/2)3/3 | F = 4E*(Re*)0.5(δ − δr)3/2/3 Re* = (3Fm/4E*)2/(δm − δr)3 δr = δm(0.8(1 − ((δm/δY + 5.5)/6.5))−2) | |
Thornton [38] | δ < δY: F = 4E*(R*)0.5δ1.5/3 δY = (πσYh/(2E*))2R* | δ δY: F(δ) = FY + πσYhR*(δ − δY) FY = 4E*(R*)0.5δY1.5/3 | F = 4E*(Re*)0.5(δ-δr)3/2/3 Re* = 4E*((2Fm + FY)/(2πσY))3/2/3Fm δr = δm − (3Fm/4E*(Re*)0.5)2/3 | |
KE [41,42] | δ < δY: F = 4E*(R*)0.5δ1.5/3 δY = (2.8πKσYh/2E*)2R* K = 0.454 + 0.41υ | ≤ δ/δY 6: F = 1.03(δ/δY)1.425FY /δY 110: F = 1.40(δ/δY)1.263FY FY = 4E*(R*)0.5δY1.5/3 | F = Fm((δ − δr)/(δm − δr))1.5(δm/δY)−0.0331 δr = δm(1 − (δm/δY)−0.28)(1 − (δm/δY)−0.69) Re* = R*(1 + 1.275(E*/δY)−0.216(δm/δY − 1)) | |
KK [43] | δ < δY: F = 2E*δat/3 At = πat2 at = (δ2 − 2R*δ)1/2 δY = 2R*atY/(1 + atY) atY = (1.78σYh/E*)2 | δ δY: F = atσYh(0.839 + ln((E*/σYh)0.656(δ/at)0.651))/(2.193 − ln(E*/σYh)0.394(δ/at)0.419)) | F = 4E*(Re*)0.5(δ − δr)3/2/3 δr = δm(1 − 0.591(E*/σY)−0.156) Re* = (3Fm/4E*)2/(δm − δr)3 | |
Models | Elastic loading phase | Mix elastic-plastic loading phase | Fully plastic loading phase | Unloading phase |
Stronge [40] | δ < δY: F = 4E*(R*)0.5δ1.5/3 δY = (3πpY/4E*)2R* pY = 1.1σYh | δY δδp: F = FY(2δ/δY − 1)(1 + 3.3−1ln(2δ/δY − 1)) FY = 4E*(R*)0.5δY1.5/3, δp = 84δY | δ δp: F(δ) = 2.8FY(2δ/δY − 1)/1.1 | F = 4E*(Re*)0.5(δ − δr)3/2/3 Re* = (3Fm(R*/δY)1.5/4E*)0.5 δr = δm-δYRe*/R* |
ML [45] | δ < δY: F = 4E*(R*)0.5δ1.5/3 δY = π2R*pY2/4/E*2 pY = 1.6σY, ψ = 2.8 δp = ε2δY/2, ε = 36 | δY δδp: F(δ) = δ(c1 + c2ln(δ/δY)) + c3 c1 = (pY(1 + ln(ε2/2)) − 2ψσY)πR*/ln(ε2/2) c2 = (2ψσY − pY)πR*/ln(ε2/2) c3 = 4E*R*0.5δY1.5/3 | δ δp: F(δ) = Fp + Kp(δ − δp) Kp =c1 + c2ln(ε2/2) Fp = δp(c1 + c2ln(ε2/2)) + c3 | F = 4E*(Re*)0.5(δ − δr)3/2/3 δr = δm − (3Fm/(4E*(Re*)0.5))2/3 Re* = 4E*(R*)1.5δm3/2/3Fm (δm < δp) Re* = 4E*(R*)1.5δp3/2/3Fp (δm δp) |
3. Solution of Transient Impact Responses by Eigenfunction Expansion Method
3.1. Equation of Motion of the Beam
3.2. Solutions of Transient Structure Responses
3.3. Solving Procedure for Repeated Transverse Impact on Beams
4. Experiments
5. Results and Discussion
5.1. Parameter Determinations
5.2. Transient Wave Propagation
5.2.1. The First Impact
5.2.2. The 51st Repeated Impact
5.2.3. The 91st Repeated Impact
5.3. Transient Impact Behaviors
5.3.1. Contact Force and Energy Transformation
5.3.2. Impact Duration
5.3.3. Accumulated Permanent Indentation
5.3.4. Coefficient of Restitution
5.3.5. Separation Velocity
6. Conclusions
- (1)
- The eigenfunction expansion method could predict the wave propagation during repeated impacts on beams, and the results agree well with the experiments.
- (2)
- For transient impact behaviors related to energy dissipations, including the accumulated permanent indentation, the coefficient of restitution and the separation velocity of the sphere, the results of eigenfunction expansion method agree well with the experimental results, while the results of spring-mass method have large discrepancy with the experimental results.
- (3)
- For impact duration, the simulation results of eigenfunction expansion method and spring-mass method both agree well with the experimental results.
- (4)
- The differences for the eigenfunction expansion method and spring-mass method are that, for eigenfunction expansion method the energy can be dissipated by wave propagations, structural vibrations as well as local contact behaviors, while the spring-mass method only dissipates energy thorough structural vibrations and local contact behaviors.
- (5)
- The eigenfunction expansion method appears to be suitable for the transient responses of repeated transverse impacts on beams, especially for the study of impact-induced wave propagations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peterson, V.; Ansell, A.; Hallgren, M. On the residual static and impact capacity of shear-reinforced concrete beams subjected to an initial impact. Appl. Sci. 2022, 12, 11377. [Google Scholar] [CrossRef]
- Christoforou, A.P.; Yigit, A.S. Effect of flexibility on low velocity impact Response. J. Sound Vib. 1998, 217, 563–578. [Google Scholar] [CrossRef]
- Yigit, A.S.; Christoforou, A.P.; Majeed, M.A. A nonlinear visco-elastoplastic impact model and the coefficient of restitution. Nonlinear Dynam. 2011, 66, 509–521. [Google Scholar] [CrossRef]
- Pashah, S.; Massenzio, M.; Jacquelin, E. Prediction of structural response for low velocity impact. Int. J. Impact Eng. 2008, 35, 119–132. [Google Scholar] [CrossRef]
- Schiehlen, W.; Seifried, R.; Eberhard, P. Elastoplastic phenomena in multibody impact dynamics. Comput. Method Appl. M. 2006, 195, 6874–6890. [Google Scholar] [CrossRef]
- Olsson, R. Mass criterion for wave controlled impact response of composite Plates. Compos. Part A-Appl. S. 2000, 31, 879–887. [Google Scholar] [CrossRef]
- Yigit, A.S.; Christoforou, A.P. Limits of asymptotic solutions in low-velocity impact of composite plates. Compos. Struct. 2007, 81, 568–574. [Google Scholar] [CrossRef]
- Olsson, R. Impact response of orthotropic composite plates predicted from a one-parameter differential equation. AIAA J. 1992, 30, 1587–1596. [Google Scholar] [CrossRef]
- Christoforou, A.P.; Yigit, A.S.; Majeed, M. Low-velocity impact response of structures with local plastic deformation: Characterization and scaling. J. Comput. Nonlin. Dyn. 2013, 8, 011012. [Google Scholar] [CrossRef]
- Doyle, J.F. Wave Propagation in Structures: An FFT-Based Spectral Analysis Methodology, 1st ed.; Springer: New York, NY, USA, 1989; pp. 80–90. [Google Scholar]
- Schwieger, H. Central deflection of a transversely struck beam. Exp. Mech. 1970, 10, 166–169. [Google Scholar] [CrossRef]
- Malekzadeh, K.S.; Khalili, M.R.; Gorgabad, A.V. Dynamic response of composite sandwich beams with arbitrary functionally graded cores subjected to low-velocity impact. Mech. Adv. Mater. Struc. 2015, 22, 605–618. [Google Scholar] [CrossRef]
- Kabir, M.Z.; Shafei, E. Analytical and numerical study of FRP retrofitted RC beams under low velocity impact. Sci. Iran. 2009, 16, 415–428. [Google Scholar]
- Jacquelin, E.; Laine, J.P.; Bennani, A.; Massenzio, M. A modelling of an impacted structure based on constraint modes. J. Sound Vib. 2007, 301, 789–802. [Google Scholar] [CrossRef]
- Pashah, S.; Massenzio, M.; Jacquelin, E. Structural response of impacted structure described through anti-oscillators. Int. J. Impact Eng. 2008, 35, 471–486. [Google Scholar] [CrossRef]
- Christoforou, A.P.; Yigit, A.S. Characterization of impact in composite plates. Compos. Struct. 1998, 43, 15–24. [Google Scholar] [CrossRef]
- Eringen, A.C. Transverse impact on beams and plates. Int. J. Appl. Mech. 1953, 20, 461–468. [Google Scholar] [CrossRef]
- Yin, X.C.; Qin, Y.; Zou, H. Transient responses of repeated impact of a beam against a stop. Int. J. Solids Struct. 2007, 44, 7323–7339. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.C.; Yue, Z.Q. Transient plane-strain response of multilayered elastic cylinders to axisymmetric impulse. Int. J. Appl. Mech. 2002, 69, 825–835. [Google Scholar] [CrossRef]
- Eringen, A.C.; Suhubi, E.S.; Chao, C.C. Elastodynamics, Vol. II. In Linear Theory, 1st ed.; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Natsuki, T.; Natsuki, J. Transverse impact of double-layered grapheme sheets on an elastic foundation. Int. J. Eng. Sci. 2018, 124, 41–48. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics, 1st ed.; Cambridge University Press: New York, NY, USA, 1987. [Google Scholar]
- Jackson, R.; Chusoipin, I.; Green, I. A finite element study of the residual stress and deformation in hemispherical contacts. J. Tribol. 2005, 127, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Wang, S. Energy dissipation in normal elastoplastic impact between two spheres. Int. J. Appl. Mech. 2009, 76, 061010. [Google Scholar] [CrossRef]
- Brake, M.R. An analytical elastic-perfectly plastic contact model. Int. J. Solids Struct. 2012, 49, 3129–3141. [Google Scholar] [CrossRef] [Green Version]
- Brake, M.R. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts. Int. J. Solids Struct. 2015, 62, 104–123. [Google Scholar] [CrossRef]
- Ghaednia, H.; Marghitu, D.B.; Jackson, R.L. Predicting the permanent deformation after the impact of a rod with a flat surface. J. Tribol. 2015, 137, 011403. [Google Scholar] [CrossRef]
- Chong, W.W.F.; Cruz, M.D.L. Elastoplastic contact of rough surfaces: A line contact model for boundary regime of lubrication. Meccanica 2014, 49, 1177–1191. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yin, X.C.; Deng, Q.M.; Yu, B.; Hao, Q.M.; Dong, X.Y. Experimental and theoretical analyses of elastic-plastic repeated impacts by considering wave Effects. Eur. J. Mech. A-Solid. 2017, 65, 212–222. [Google Scholar] [CrossRef]
- Wang, H.; Yin, X.C.; Qi, X.L.; Deng, Q.M.; Yu, B.; Hao, Q.M. Experimental and theoretical analysis of the elastic-plastic normal repeated impacts of a sphere on a beam. Int. J. Solids Struct. 2017, 109, 131–142. [Google Scholar] [CrossRef]
- Sadighi, M.; Alderliesten, R. Impact fatigue, multiple and repeated low-velocity impacts on FRP composites: A review. Compos Struct. 2022, 297, 115962. [Google Scholar] [CrossRef]
- Cho, S.R.; Truong, D.D.; Shin, H.K. Repeated lateral impacts on steel beams at room and sub-zero temperatures. Int. J. Impact. Eng. 2014, 72, 75–84. [Google Scholar] [CrossRef]
- Truong, D.D.; Jung, H.J.; Shin, H.K.; Cho, S.R. Response of low-temperature steel beams subjected to single and repeated lateral impacts. Int. J. Nav. Arch. Ocean Eng. 2018, 10, 670–682. [Google Scholar] [CrossRef]
- Li, L.; Sun, L. Experimental and numerical investigations of crack behavior and life prediction of 18Cr2Ni4WA steel subjected to repeated impact loading. Eng. Fail. Anal. 2016, 65, 11–25. [Google Scholar] [CrossRef]
- He, X.; Soares, C.G. Experimental study on the dynamic behavior of beams under repeated impacts. Int. J. Impact. Eng. 2021, 147, 103724. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Yin, X.C.; Yu, B.; Hao, Q.M.; Xiao, X.; Jiang, L.; Wang, H.; Chen, C.Q.; Xie, W.H.; Ding, H.P.; et al. Experimental analysis of dynamic behavior of elastic visco-plastic beam under repeated mass impacts. Int. J. Impact. Eng. 2023, 171, 104371. [Google Scholar] [CrossRef]
- Hao, Q.M.; Yin, X.C.; Qian, P.B.; Wang, H.; Ding, H.P.; Yu, B.; Deng, Q.M.; Dong, X.Y.; Qi, X.L. Transient Impact Analysis of Elastic-plastic Beam with Strain-Rate Sensitivity. Int. J. Impact. Eng. 2021, 153, 103865. [Google Scholar] [CrossRef]
- Thornton, C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. Int. J. Appl. Mech. 1997, 64, 383–386. [Google Scholar] [CrossRef]
- Abrate, S. Impact on Composite Structures, 1st ed.; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Stronge, W.J. Impact Mechanics, 1st ed.; Cambridge University Press: London, UK, 2000. [Google Scholar]
- Kogut, L.; Etsion, I. Elastic-plastic contact analysis of a sphere and a rigid flat. Int. J. Appl. Mech. 2002, 69, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Etsion, I.; Kligerman, Y.; Kadin, Y. Unloading of an elastic-plastic loaded spherical contact. Int. J. Solids Struct. 2005, 42, 3716–3729. [Google Scholar] [CrossRef]
- Kogut, L.; Komvopoulos, K. Analysis of the spherical indentation cycle for elastic perfectly plastic solids. J. Mater Res. 2004, 19, 3641–3653. [Google Scholar] [CrossRef]
- Majeed, M.A.; Yigit, A.S.; Christoforou, A.P. Elastoplastic contact/impact of rigidly supported composites. Compos. Part B-Eng. 2012, 43, 1244–1251. [Google Scholar] [CrossRef]
- Ma, D.; Liu, C. Contact law and coefficient of restitution in elastoplastic spheres. Int. J. Appl. Mech. 2015, 82, 121006. [Google Scholar] [CrossRef]
- Timoshenko, S. Vibration Problems in Engineering, 1st ed.; D. Van Nostrand Company: New York, NY, USA, 1974. [Google Scholar]
Sphere (Gr 15) | Simply Supported Beam (Q345) | ||
---|---|---|---|
35.000 (mm) | 780.0 (mm) | ||
27.80 (mm) | |||
60.00 (mm) | |||
7800 (kg/m3) | 7800 (kg/m3) | ||
1.400 (kg) | 10.929 (kg) | ||
208,000 (MPa) | 210,000 (MPa) | ||
2555 (MPa) | 345 (MPa) | ||
0.3 | 0.3 |
H (mm) | Number of Impacts | H (mm) | Number of Impacts | H (mm) | Number of Impacts | H (mm) | Number of Impacts |
---|---|---|---|---|---|---|---|
50 | 4 | 130 | 7 | 210 | 3 | 290 | 3 |
60 | 3 | 140 | 2 | 220 | 8 | 300 | 2 |
70 | 3 | 150 | 2 | 230 | 2 | 310 | 1 |
80 | 3 | 160 | 2 | 240 | 5 | 320 | 1 |
90 | 3 | 170 | 2 | 250 | 2 | 330 | 3 |
100 | 2 | 180 | 4 | 260 | 2 | 340 | 3 |
110 | 2 | 190 | 2 | 270 | 2 | 350 | 1 |
120 | 2 | 200 | 7 | 280 | 2 | 360 | 1 |
Modes | COR | |||
---|---|---|---|---|
10 | 0.11000 | 0.11902 | 0.23238 | 0.36159 |
20 | 0.11200 | 0.10761 | 0.22679 | 0.39040 |
50 | 0.11200 | 0.10746 | 0.22681 | 0.39034 |
100 | 0.11200 | 0.10745 | 0.22682 | 0.39036 |
200 | 0.11200 | 0.10745 | 0.22682 | 0.39036 |
Theoretical Methods | P (N.s) | W (N.m) | ΔE (N.m) | Ua (N.m) | P (N.s) | W (N.m) | ΔE (N.m) | Ua (N.m) |
---|---|---|---|---|---|---|---|---|
V01 = 0.990 m/s | V091 = 2.656 m/s | |||||||
Eigenfunction expansion method | 1.235 | 0.383 | 0.678 | 0.295 | 3.282 | 0.708 | 4.873 | 4.165 |
Spring-mass method | 1.404 | 0.496 | 0.681 | 0.185 | 5.125 | 1.789 | 4.240 | 2.451 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Mao, S.; Wu, X.; Zhang, H. Transient Responses of Repeated Transverse Impacts on Beams. Appl. Sci. 2023, 13, 1115. https://doi.org/10.3390/app13021115
Wang H, Mao S, Wu X, Zhang H. Transient Responses of Repeated Transverse Impacts on Beams. Applied Sciences. 2023; 13(2):1115. https://doi.org/10.3390/app13021115
Chicago/Turabian StyleWang, Hui, Shunyuan Mao, Xiaomao Wu, and Huiling Zhang. 2023. "Transient Responses of Repeated Transverse Impacts on Beams" Applied Sciences 13, no. 2: 1115. https://doi.org/10.3390/app13021115
APA StyleWang, H., Mao, S., Wu, X., & Zhang, H. (2023). Transient Responses of Repeated Transverse Impacts on Beams. Applied Sciences, 13(2), 1115. https://doi.org/10.3390/app13021115