Lithium-Ion Battery Health Estimation Using an Adaptive Dual Interacting Model Algorithm for Electric Vehicles
Abstract
:1. Introduction
2. Battery Models
2.1. Dual Polarity (DP) Model
2.2. Parameter Model
3. Experimental Data and Estimation Algorithms
3.1. B036 (Normal Aging) Dataset
3.2. B034 Dataset (Accelerated Aging)
3.3. Ampere-Hour Counting
3.4. Kalman Filter
3.5. Sliding Innovation Filter
3.6. Interacting Multiple Model (IMM)
3.7. Dual Filters
4. Artificial Measurements
4.1. State Measurement Equations
4.2. Parameter Measurement Equations
5. Model Parameter Identification
5.1. Least Squares Setup
5.2. Least Squares Results
B036 Model
6. Simulation Setup and Results
6.1. Simulation Setup
6.2. Simulation Results
6.2.1. B036 Dataset Dual-IMM Results
6.2.2. Dual-IMM Results with B034 Dataset
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, G.; Ma, G.; Cong, N. Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev. 2015, 41, 225–236. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Wolverton, C.; Isaacs, E.D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Li, S.; Hu, M.; Li, Y.; Gong, C. Fractional-order modeling and SOC estimation of lithium-ion battery considering capacity loss. Int. J. Energy Res. 2019, 43, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.; Malysz, P.; Kollmeyer, P.; Emadi, A. Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art. In IEEE Access; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; Volume 8, pp. 52796–52814. [Google Scholar] [CrossRef]
- Luo, J.; Peng, J.; He, H. Lithium-ion battery SOC estimation study based on Cubature Kalman filter. Energy Procedia 2019, 158, 3421–3426. [Google Scholar] [CrossRef]
- Wang, D.; Huang, H.; Tang, Z.; Zhang, Q.; Yang, B.; Zhang, B. A lithium-ion battery electrochemical–thermal model for a wide temperature range applications. Electrochim. Acta 2020, 362, 137118. [Google Scholar] [CrossRef]
- Tang, S.; Camacho-Solorio, L.; Wang, Y.; Krstic, M. State-of-Charge estimation from a thermal–electrochemical model of lithium-ion batteries. Automatica 2017, 83, 206–219. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Bahiraei, F.; Nazri, G.-A.; Saif, M. Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries. Electrochim. Acta 2017, 247, 569–587. [Google Scholar] [CrossRef]
- Wang, L.; Niu, J.; Zhao, W.; Li, G.; Zhao, X. Study on electrochemical and thermal characteristics of lithium-ion battery using the electrochemical-thermal coupled model. Int. J. Energy Res. 2019, 43, 2086–2107. [Google Scholar] [CrossRef]
- Barcellona, S.; Piegari, L. Lithium Ion Battery Models and Parameter Identification Techniques. Energies 2017, 10, 2007. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, W.; Lei, G. A Review of Li-ion Battery Equivalent Circuit Models. Trans. Electr. Electron. Mater. 2016, 17, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yu, Q. The lithium battery SOC estimation on square root unscented Kalman filter. Energy Rep. 2022, 8, 286–294. [Google Scholar] [CrossRef]
- Zou, C.; Manzie, C.; Nešić, D.; Kallapur, A.G. Multi-time-scale observer design for state-of-charge and state-of-health of a lithium-ion battery. J. Power Sources 2016, 335, 121–130. [Google Scholar] [CrossRef]
- Tian, H.; Qin, P.; Li, K.; Zhao, Z. A review of the state of health for lithium-ion batteries: Research status and suggestions. J. Clean. Prod. 2020, 261, 120813. [Google Scholar] [CrossRef]
- Appiah, W.A.; Park, J.; Byun, S.; Roh, Y.; Ryou, M.-H.; Lee, Y.M. Time-Effective Accelerated Cyclic Aging Analysis of Lithium-Ion Batteries. Chemelectrochem 2019, 6, 3714–3725. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Adermann, J.; Frericks, A.; Pak, M.; Reiter, C.; Lohmann, B.; Lienkamp, M. Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: A use-case life cycle analysis. J. Energy Storage 2018, 19, 73–87. [Google Scholar] [CrossRef]
- Ren, P.; Wang, S.; Huang, J.; Chen, X.; He, M.; Cao, W. Novel co-estimation strategy based on forgetting factor dual particle filter algorithm for the state of charge and state of health of the lithium-ion battery. Int. J. Energy Res. 2022, 46, 1094–1107. [Google Scholar] [CrossRef]
- Rahimifard, S.; Ahmed, R.; Habibi, S. Interacting Multiple Model Strategy for Electric Vehicle Batteries State of Charge/Health/Power Estimation. IEEE Access 2021, 9, 109875–109888. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Madani, S.S.; Schaltz, E.; Kær, S.K. A Review of Different Electric Equivalent Circuit Models and Parameter Identification Methods of Lithium-Ion Batteries. ECS Trans. 2018, 87, 23–37. [Google Scholar] [CrossRef]
- Hasib, S.A.; Islam, S.; Chakrabortty, R.K.; Ryan, M.J.; Saha, D.K.; Ahamed, H.; Moyeen, S.I.; Das, S.K.; Ali, F.; Islam, R.; et al. A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management. IEEE Access 2021, 9, 86166–86193. [Google Scholar] [CrossRef]
- Kalman, R.E. 24_Kalman1960_A_New_Approach_Linear_Filtering_and_Prediction_Problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Gadsden, S.A.; Habibi, S.; Kirubarajan, T. Kalman and smooth variable structure filters for robust estimation. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1038–1050. [Google Scholar] [CrossRef]
- Gadsden, S.A.; Al-Shabi, M. The Sliding Innovation Filter. IEEE Access 2020, 8, 96129–96138. [Google Scholar] [CrossRef]
- Lai, X.; Wang, S.; He, L.; Zhou, L.; Zheng, Y. A hybrid state-of-charge estimation method based on credible increment for electric vehicle applications with large sensor and model errors. J. Energy Storage 2020, 27, 101106. [Google Scholar] [CrossRef]
- Nejad, S.; Gladwin, D.; Stone, D. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states. J. Power Sources 2016, 316, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Bustos, R.; Gadsden, S.A.; Malysz, P.; Al-Shabi, M.; Mahmud, S. Health Monitoring of Lithium-Ion Batteries Using Dual Filters. Energies 2022, 15, 2230. [Google Scholar] [CrossRef]
- Wei, X.; Yimin, M.; Feng, Z. Lithium-ion Battery Modeling and State of Charge Estimation. Integr. Ferroelectr. 2019, 200, 59–72. [Google Scholar] [CrossRef]
- Tian, N.; Wang, Y.; Chen, J.; Fang, H. On parameter identification of an equivalent circuit model for lithium-ion batteries. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; pp. 187–192. [Google Scholar] [CrossRef]
Parameters | Unit | Lower Bound | Upper Bound | Guess |
---|---|---|---|---|
0.003 | 0.500 | 0.020 | ||
0.03 | 0.500 | 0.100 | ||
) | 0.00025 | 0.002 | 0.001 | |
0.03 | 0.500 | 0.100 | ||
) | 0.02 | 0.100 | 0.010 |
RC Parameters | Value | OCV (SOC) | Value |
---|---|---|---|
0.0700 | 11.2906 | ||
0.1730 | −39.5170 | ||
1428.86 | 65.7438 | ||
0.4438 | −50.5845 | ||
52,903.10 | 14.4308 |
Model Variables | Value | IMM Variables | Value |
---|---|---|---|
0 | ) | ||
0 | Diag(0.1,0.01,1) | ||
100% | ) | ||
0.07 | ) | ||
2.00 | Diag(0.1,0.01,1) | ||
Diag(500,0.8) | |||
Diag(0.1,0.01,1) | 0.99 | ||
) | 0.5 | ||
Diag(10,0.05) | |||
Diag(7,1.5,80) | |||
Diag(5000,4) |
Algorithm | RMSE |
---|---|
Dual-KF | 0.0325 |
Dual-KF-IMM | 0.0292 |
Dual-SIF | 0.0460 |
Dual-SIF-IMM | 0.0469 |
Algorithm | RMSE |
---|---|
Dual-KF | 0.3677 |
Dual-KF-IMM | 0.1758 |
Dual-SIF | 0.2891 |
Dual-SIF-IMM | 0.2198 |
Algorithm | RMSE |
---|---|
Dual-KF | 0.3229 |
Dual-KF-IMM | 0.2581 |
Dual-SIF | 0.0831 |
Dual-SIF-IMM | 0.0458 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustos, R.; Gadsden, S.A.; Al-Shabi, M.; Mahmud, S. Lithium-Ion Battery Health Estimation Using an Adaptive Dual Interacting Model Algorithm for Electric Vehicles. Appl. Sci. 2023, 13, 1132. https://doi.org/10.3390/app13021132
Bustos R, Gadsden SA, Al-Shabi M, Mahmud S. Lithium-Ion Battery Health Estimation Using an Adaptive Dual Interacting Model Algorithm for Electric Vehicles. Applied Sciences. 2023; 13(2):1132. https://doi.org/10.3390/app13021132
Chicago/Turabian StyleBustos, Richard, S. Andrew Gadsden, Mohammad Al-Shabi, and Shohel Mahmud. 2023. "Lithium-Ion Battery Health Estimation Using an Adaptive Dual Interacting Model Algorithm for Electric Vehicles" Applied Sciences 13, no. 2: 1132. https://doi.org/10.3390/app13021132
APA StyleBustos, R., Gadsden, S. A., Al-Shabi, M., & Mahmud, S. (2023). Lithium-Ion Battery Health Estimation Using an Adaptive Dual Interacting Model Algorithm for Electric Vehicles. Applied Sciences, 13(2), 1132. https://doi.org/10.3390/app13021132