A Group Resident Daily Load Forecasting Method Fusing Self-Attention Mechanism Based on Load Clustering
Abstract
:1. Introduction
1.1. Background
1.2. Related Works
2. Methodology
2.1. Clustering Method Based on Dimensionality Reduction
2.1.1. Dimensionality Reduction Method Based on SVD
2.1.2. Clustering Method Based on K-Shape
2.2. Noise Reduction Method Based on Empirical Mode Decomposition
2.3. Bi-LSTM-Attention Model for Residential Daily Load Forecasting
2.3.1. Bi-LSTM Method
2.3.2. Self-Attention Mechanism
3. Example Analysis
3.1. Data Sources
3.2. Error Indicator
3.3. Experimental Analysis and Verification
3.3.1. Clustering Visualization and Comparison Experiment
3.3.2. Noise Reduction Visualization and Comparison Experiment
3.3.3. Daily Load Forecasting Results from Visualization and Comparison Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Zhang, Z.; Song, Z. A comparative study of the data-driven day-ahead hourly provincial load forecasting methods: From classical data mining to deep learning. Renew. Sustain. Energy Rev. 2020, 119, 109632. [Google Scholar] [CrossRef]
- Khan, Z.A.; Ullah, A.; Haq, I.U.; Hamdy, M.; Mauro, G.M.; Muhammad, K.; Hijji, M.; Baik, S.W. Efficient short-term electricity load forecasting for effective energy management. Sustain. Energy Technol. Assess. 2022, 53, 102337. [Google Scholar] [CrossRef]
- Yang, Y.; Hong, W.; Li, S. Deep ensemble learning based probabilistic load forecasting in smart grids. Energy 2019, 189, 116324. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F.; Zareipour, H. Short-term load forecast of microgrids by a new bilevel prediction strategy. IEEE Trans. Smart Grid 2010, 1, 286–294. [Google Scholar] [CrossRef]
- Zhanghua, Z.; Qian, A. Present situation of research on microgrid and its application prospects in China. Power Syst. Technol. 2008, 32, 27–31. [Google Scholar]
- Eskandarnia, E.; Al-Ammal, H.; Ksantini, R.; Hammad, M. Deep Learning Techniques for Smart Meter Data Analytics: A Review. SN Comput. Sci. 2022, 3, 243. [Google Scholar] [CrossRef]
- Lu, J.; Zhu, Y.; Peng, W. Interactive demand response method of smart community considering clustering of electricity consumption behavior. Autom. Electr. Power Syst. 2017, 41, 113–120. [Google Scholar]
- Hansen, J.V.; Nelson, R.D. Neural networks and traditional time series methods: A synergistic combination in state economic forecasts. IEEE Trans. Neural Netw. 1997, 8, 863–873. [Google Scholar] [CrossRef]
- Bento, P.M.R.; Pombo, J.A.N.; Calado, M.R.A.; Mariano, S.J. Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting. Energies 2021, 14, 7378. [Google Scholar] [CrossRef]
- Zheng, C.; Wu, Y.; Chen, Z.; Wang, K.; Zhang, L. A Load Forecasting Method of Power Grid Host Based on SARIMA-GRU Model. In National Conference of Theoretical Computer Science; Springer: Singapore, 2021; pp. 135–153. [Google Scholar]
- Fall, S.; N’Guessan, A.; Iraqi, F.; Koutouan, A. Forecasting the French Personal Services Sector Wage Bill: A VARIMA Approach. In International Conference on Engineering, Applied Sciences, and System Modeling; Springer: Cham, Switzerland, 2017; pp. 119–134. [Google Scholar]
- Protić, M.; Shamshirband, S.; Petković, D.; Abbasi, A.; Kiah, M.L.M.; Unar, J.A.; Živković, L.; Raos, M. Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm. Energy 2015, 87, 343–351. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Z.; Zou, X.; Quiring, S.M. Comparison of three short-term load forecast models in Southern California. Energy 2019, 189, 116358. [Google Scholar] [CrossRef]
- Panda, S.K.; Ray, P. An Effect of Machine Learning Techniques in Electrical Load forecasting and Optimization of Renewable Energy Sources. J. Inst. Eng. Ser. B 2022, 103, 721–736. [Google Scholar] [CrossRef]
- Zhou, K.; Wei, S.; Yang, S. Time-of-use pricing model based on power supply chain for user-side microgrid. Appl. Energy 2019, 248, 35–43. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, P.; Zheng, C.; Peng, J.; Chen, Q.; Huang, J. Control device development of user-side PV-ESS microgrid. Power Syst. Technol. 2017, 41, 426–433. [Google Scholar]
- Li, Y.; Huan, J.; Cao, H.; Gao, C.; Zhang, X. Distribution net-work planning strategy based on integrated energy collaborative optimization. Power Syst. Technol. 2018, 42, 1393–1400. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Zhong, Y.; Sun, J.; Shi, F. Study on power consumption load forecast based on K-means clustering and FCM–BP model. Energy Rep. 2020, 6, 693–700. [Google Scholar] [CrossRef]
- Liu, F.; Dong, T.; Hou, T.; Liu, Y. A hybrid short-term load forecasting model based on improved fuzzy c-means clustering, random forest, and deep neural networks. IEEE Access 2021, 9, 59754–59765. [Google Scholar] [CrossRef]
- Alipour, M.; Aghaei, J.; Norouzi, M.; Niknam, T.; Hashemi, S.; Lehtonen, M. A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration. Energy 2020, 205, 118106. [Google Scholar] [CrossRef]
- Yao, S.J.; Song, Y.H.; Zhang, L.Z.; Cheng, X.Y. Wavelet transform and neural networks for short-term electrical load forecasting. Energy Convers. Manag. 2000, 41, 1975–1988. [Google Scholar] [CrossRef]
- Wu, X.; Hong, D.; Chanussot, J. UIU-Net: U-Net in U-Net for Infrared Small Object Detection. IEEE Trans. Image Process. 2022, 32, 364–376. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5966–5978. [Google Scholar] [CrossRef]
- Zheng, K.; Gao, L.; Liao, W.; Hong, D.; Zhang, B.; Cui, X.; Chanussot, J. Coupled convolutional neural network with adaptive response function learning for unsupervised hyperspectral super resolution. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2487–2502. [Google Scholar] [CrossRef]
- Yang, C.; Wang, W.; Zhang, X.; Guo, Q.; Zhu, T.; Ai, Q. A parallel electrical optimized load forecasting method based on quasi-recurrent neural network. IOP Conf. Ser. Earth Environ. Sci. 2021, 696, 012040. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Cai, M.; Pipattanasomporn, M.; Rahman, S. Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques. Appl. Energy 2019, 236, 1078–1088. [Google Scholar] [CrossRef]
- Oprea, S.V.; Bâra, A. Ultra-short-term forecasting for photovoltaic power plants and real-time key performance indicators analysis with big data solutions. Two cases studies-PV Agigea and PV Giurgiu located in Romania. Comput. Ind. 2020, 120, 103230. [Google Scholar] [CrossRef]
- Mughees, N.; Mohsin, S.A.; Mughees, A.; Mughees, A. Deep sequence to sequence Bi-LSTM neural networks for day-ahead peak load forecasting. Expert Syst. Appl. 2021, 175, 114844. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Ji, H.; Zhang, S.; Li, P. Ultra-short-term load demand forecast model framework based on deep learning. Energies 2020, 13, 4900. [Google Scholar] [CrossRef]
- Kalman, D. A singularly valuable decomposition: The SVD of a matrix. Coll. Math. J. 1996, 27, 2–23. [Google Scholar] [CrossRef]
- Stewart, G.W. On the early history of the singular value decomposition. SIAM Rev. 1993, 35, 551–566. [Google Scholar] [CrossRef] [Green Version]
- Paparrizos, J.; Gravano, L. k-shape: Efficient and accurate clustering of time series. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, VIC, Australia, 31 May–4 June 2015; pp. 1855–1870. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Zhang, B. Foreign exchange rates forecasting with an EMD-LSTM neural networks model. J. Phys. Conf. Ser. 2018, 1053, 012005. [Google Scholar] [CrossRef]
- Gao, X.; Li, X.; Zhao, B.; Ji, W.; Jing, X.; He, Y. Short-term electricity load forecasting model based on EMD-GRU with feature selection. Energies 2019, 12, 1140. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Xing, F.; Wen, G.; Lu, N.; He, H.; Jiao, R. Daily peak load prediction based on correlation analysis and Bi-directional long short-term memory network. Power Syst. Technol. 2021, 45, 2719–2730. [Google Scholar]
- Yu, F.; Wang, L.; Jiang, Q.; Yan, Q.; Qiao, S. Self-Attention-Based Short-Term Load Forecasting Considering Demand-Side Management. Energies 2022, 15, 4198. [Google Scholar] [CrossRef]
- Le, T.; Vo, M.T.; Vo, B.; Hwang, E.; Rho, S.; Baik, S.W. Improving electric energy consumption prediction using CNN and Bi-LSTM. Appl. Sci. 2019, 9, 4237. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, B.; Ji, W.; Gao, X.; Li, X. Short-term load forecasting method based on GRU-NN model. Autom. Electr. Power Syst. 2019, 43, 53–58. [Google Scholar]
- Tokgöz, A.; Ünal, G. A RNN based time series approach for forecasting turkish electricity load. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Wu, K.; Gu, J.; Meng, L.; Wen, H.; Ma, J. An explainable framework for load forecasting of a regional integrated energy system based on coupled features and multi-task learning. Prot. Control Mod. Power Syst. 2022, 7, 24. [Google Scholar] [CrossRef]
- Yang, W.; Shi, J.; Li, S.; Song, Z.; Zhang, Z.; Chen, Z. A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior. Appl. Energy 2022, 307, 118197. [Google Scholar] [CrossRef]
Algorithm | MAPE | MAE | MSE | RMSE | SMAPE |
---|---|---|---|---|---|
ALL | 2.16% | 46.36 | 3177 | 56.36 | 3.29 |
K-Shape_2 | 1.49% | 23.77 | 2994 | 59.67 | 2.84 |
Algorithm | MAPE | MAE | MSE | RMSE | SMAPE |
---|---|---|---|---|---|
Dbscan | 16.24% | 122.07 | 20,496 | 143.17 | 15.62 |
k-means | 7.59% | 61.77 | 10,699 | 103.44 | 10.16 |
K-Shape | 1.49% | 23.77 | 2994 | 59.67 | 2.84 |
Model | MAPE | MAE | MSE | RMSE | SMAPE |
---|---|---|---|---|---|
EMD_all | 3.01% | 24.32 | 1862 | 43.15 | 3.82 |
EMD_5 | 2.50% | 20.46 | 3130 | 55.95 | 6.06 |
Algorithm | MAPE | MAE | MSE | RMSE | SMAPE |
---|---|---|---|---|---|
Bi-LSTM_2 | 1.88% | 45.87 | 3560 | 59.67 | 2.84 |
BLA_2 | 1.49% | 23.77 | 2994 | 55.66 | 1.84 |
Bi-LSTM_3 | 3.12% | 34.75 | 1845 | 42.95 | 2.34 |
BLA_3 | 1.51% | 23.75 | 3015 | 40.12 | 2.10 |
Bi-LSTM_5 | 2.78% | 40.80 | 2561 | 50.61 | 2.82 |
BLA_5 | 2.33% | 35.06 | 2503 | 48.16 | 2.62 |
Bi-LSTM_8 | 2.32% | 34.75 | 1845 | 42.95 | 2.34 |
BLA_8 | 2.04% | 28.56 | 1558 | 39.97 | 2.09 |
Bi-LSTM_10 | 2.31% | 65.84 | 6918 | 83.18 | 4.10 |
BLA_10 | 1.86% | 25.69 | 5360 | 72.50 | 3.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Zhang, R.-X.; Liu, C.-Q.; Yang, Y.-B.; Chen, C.-L. A Group Resident Daily Load Forecasting Method Fusing Self-Attention Mechanism Based on Load Clustering. Appl. Sci. 2023, 13, 1165. https://doi.org/10.3390/app13021165
Cao J, Zhang R-X, Liu C-Q, Yang Y-B, Chen C-L. A Group Resident Daily Load Forecasting Method Fusing Self-Attention Mechanism Based on Load Clustering. Applied Sciences. 2023; 13(2):1165. https://doi.org/10.3390/app13021165
Chicago/Turabian StyleCao, Jie, Ru-Xuan Zhang, Chao-Qiang Liu, Yuan-Bo Yang, and Chin-Ling Chen. 2023. "A Group Resident Daily Load Forecasting Method Fusing Self-Attention Mechanism Based on Load Clustering" Applied Sciences 13, no. 2: 1165. https://doi.org/10.3390/app13021165
APA StyleCao, J., Zhang, R. -X., Liu, C. -Q., Yang, Y. -B., & Chen, C. -L. (2023). A Group Resident Daily Load Forecasting Method Fusing Self-Attention Mechanism Based on Load Clustering. Applied Sciences, 13(2), 1165. https://doi.org/10.3390/app13021165