Image Processing Approach for Grading IVF Blastocyst: A State-of-the-Art Review and Future Perspective of Deep Learning-Based Models
Abstract
:1. Introduction
2. IVF Culture, Embryo Development, and Selection
2.1. Stages of Embryo Development in IVF
2.2. Embryo Selection and Implantation
3. Method
3.1. Search Strategy
3.2. Study Selection
4. Morphology of the Blastocyst and Quality Assessment
- Cell number and degree of symmetry: if all cells are similar in size and an appropriate number of cells are present, this indicates that the embryo has a good chance of being viable.
- Fragmentation of cells: a low proportion of embryo volume composed of cell fragments is an indicator of high viability, while an embryo containing many fragmented cells is considered to have reduced potential.
- Characteristics of the zona pellucida (ZP): embryos with a thinner ZP and higher variation in ZP thickness have a greater likelihood of producing a pregnancy.
4.1. Blastocyst Visual Assessment
4.2. Blastocyst Grading Approaches in IVF
4.2.1. Manual/Traditional
4.2.2. Semi-Automated
4.2.3. Fully-Automated
4.2.4. Machine Learning-Based Methods
Method | Approach | Description |
---|---|---|
Conventional/manual | Simplified blastocyst grading system [30] |
|
Morphological embryo selection [21] |
| |
Embryo scoring based on classification tree model [47] |
| |
Addition of PN scoring [15] |
| |
ASEBIR [10] |
| |
Semi-Automated | Blastocyst segmentation with FE and Classification [40] |
|
Blastocyst classification [23] |
| |
Embryo growth classification [58] |
| |
Embryo vitrification [43] |
| |
Embryo development stages [84] |
| |
Vitrification procedure [85] |
| |
Fully Automated | Prediction of human embryo fitness [58] |
|
Bovine blastocyst quality classification [80] |
| |
Blastocyst segmentation [78] |
| |
Segmentation and measurement of human blastocyst TE region [72] |
| |
Segmentation of bovine embryos [86] |
| |
Localization of cleaving embryo (Day 2) [80] |
| |
Grading quality of bovine blastocyst [79] |
| |
Bovine quantitative variable determination using image processing [52] |
| |
Human blastocyst segmentation [67] |
| |
Predict blastocyst development [53] |
| |
Improve blastocyst morphology [77] |
| |
Predict implantation after blastocyst transfer [75] |
| |
Analysis embryo quality: Preliminary study [64] |
|
5. Blastocyst Grading Using Deep Learning-Based Methods
5.1. Implementation of Deep Learning Models
CNN Function/DL Model | Additional Feature/Model | Input/Training Data | Output Class | Limitations | |
---|---|---|---|---|---|
Classification | VGG-16 [91] | Grad-CAM algorithm (for visualization) | Human blastocyst | Two blastocyst quality | Only suitable for TL systems (due to multiple focal depths as input). |
CNN [27,41,50,88,90,92,98] |
| Human blastocyst | Two, three and five blastocyst quality |
| |
ResNet [90,97] |
| Human embryo | 5 class (Grade 1 to 5)/9 risk factors | Issue in image capturing process and limited resources. | |
DL (MLP classifier) [94] | Raman spectroscopy | Human embryo (Day 3 hpi) | 2 class (blastula and non-blastula) | NA | |
Prediction | DNN [13,49,63] |
| Human blastocyst—TL | 2, 3 classes |
|
CNN [99] | RNN (prediction) | Human blastocyst | Three blastocyst classes | Disregard blastocyst expansion stage (due to annotation). | |
ResNet and DenseNet [24,75,83] | NA | Human embryo (Day 5) | 2, 3, 5, classes |
| |
Segmentation | U-Net [55,57,59,61] | Semantic segmentation | Human embryo/blastocyst Day 5 | Classify blastocyst phenotypes (1 class) | Only applicable for specific regions (ICM, TE, or ZP). |
SA-Net [98] | NA | Medical images (include human blastocyst | 5 classes | NA | |
Blast-Net [52] | NA | Human blastocyst | 5 classes | NA | |
CNN/FCN [56] | NA | Human blastocyst | ICM region only | applicable only for ICM. | |
HiNN [54] | Self-supervised Image Specific Refinement | human blastocyst (Day 5) | ZP region only | Applicable only for ZP. | |
SSS-Net [71] | NA | Human blastocyst | 5 classes | Less availability of medical images. | |
Localization | VGG16 [100] | NA | Human blastocyst | 5 stages | Problem with 3-cell stage. |
Detection | DCNN (ResNet backbone) [82] | NA | Mammalian embryo—Day 3, human embryo—Day 4 | 2 classes | NA |
5.2. Challenges in Deep Learning Approaches
6. Future Perspective in Automated Blastocyst Grading Using Deep Learning Approaches
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). International Classification of Diseases: 11th Revision icd-11. Geneva. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/infertility (accessed on 7 July 2022).
- Jin, X.; Wang, G.; Liu, S.; Zhang, J.; Zeng, F.; Qiu, Y.; Huang, X. Survey of the situation of infertile women seeking in vitro fertilization treatment in China. BioMed Res. Int. 2013, 2013, 179098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravitsky, V.; Kimmins, S. The forgotten men: Rising rates of male infertility urgently require new approaches for its prevention, diagnosis and treatment. Biol. Reprod. 2019, 101, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, M.; Sharifa, A.M.; Hadi, J.; IIIzam, E.; Aliya, S. Male and female infertility: Causes, And Management. IOSR J. Dent. Med. Sci. 2019, 18, 27–32. [Google Scholar] [CrossRef]
- Sun, H.; Gong, T.T.; Jiang, Y.T.; Zhang, S.; Zhao, Y.H.; Wu, Q.J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging 2019, 11, 10952–10991. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Wang, C.T.; Li, R.; Haddad, G.; Wang, W. Is day 7 culture necessary for in vitro fertilization of cryopreserved/warmed human oocytes? Reprod. Biol. Endocrinol. 2020, 18, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Louis, C.M.; Erwin, A.; Handayani, N.; Polim, A.A.; Boediono, A.; Sini, I. Review of computer vision application in in vitro fertilization: The application of deep learning-based computer vision technology in the world of IVF. J. Assist. Reprod. Genet. 2021, 38, 1627–1639. [Google Scholar] [CrossRef]
- Ajduk, A.; Zernicka-Goetz, M. Advances in embryo selection methods. F1000 Biol. Rep. 2012, 4, 11. [Google Scholar] [CrossRef]
- Filho, E.S.; Noble, J.; Wells, D. A Review on Automatic Analysis of Human Embryo Microscope Images. Open Biomed. Eng. J. 2010, 4, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Uyar, A.; Sengul, Y.; Bener, A. Emerging technologies for improving embryo selection: A systematic review. Adv. Health Care Technol. 2015, 1, 55–64. [Google Scholar] [CrossRef]
- Martínez-Granados, L.; Serrano, M.; González-Utor, A.; Ortíz, N.; Badajoz, V.; Olaya, E.; Prados, N.; Boada, M.; Castilla, J.A.; on behalf of Special Interest Group in Quality of ASEBIR (Spanish Society for the Study of Reproductive Biology). Inter-laboratory agreement on embryo classification and clinical decision: Conventional morphological assessment vs. time lapse. PLoS ONE 2017, 12, e0183328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieslinger, D.C.; De Gheselle, S.; Lambalk, C.B.; De Sutter, P.; Kostelijk, E.H.; Twisk, J.W.R.; van Rijswijk, J.; Van den Abbeel, E.; Vergouw, C.G. Embryo selection using time-lapse analysis (Early Embryo Viability Assessment) in conjunction with standard morphology: A prospective two-center pilot study. Hum. Reprod. 2016, 31, 2450–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkegaard, K.; Agerholm, I.E.; Ingerslev, H.J. Time-lapse monitoring as a tool for clinical embryo assessment. Hum. Reprod. 2012, 27, 1277–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkegaard, K.; Ahlström, A.; Ingerslev, H.J.; Hardarson, T. Choosing the best embryo by time lapse versus standard morphology. Fertil. Steril. 2015, 103, 323–332. [Google Scholar] [CrossRef]
- Mastenbroek, S.; Van Der Veen, F.; Aflatoonian, A.; Shapiro, B.; Bossuyt, P.; Repping, S. Embryo selection in IVF. Hum. Reprod. 2011, 26, 964–966. [Google Scholar] [CrossRef] [Green Version]
- Rehman, K.S.; Bukulmez, O.; Langley, M.; Carr, B.R.; Nackley, A.C.; Doody, K.M.; Doody, K.J. Late stages of embryo progression are a much better predictor of clinical pregnancy than early cleavage in intracytoplasmic sperm injection and in vitro fertilization cycles with blastocyst-stage transfer. Fertil. Steril. 2007, 87, 1041–1052. [Google Scholar] [CrossRef]
- Basari, I.; Gunawan, D. Automated Detection of Human Blastocyst Quality Using Convolutional Neural Network and Edge Detector. In Proceedings of the 2019 1st International Conference on Cybernetics and Intelligent System (ICORIS), Denpasar, Indonesia, 22–23 August 2019; pp. 181–184. [Google Scholar] [CrossRef]
- Tao, J.; Tamis, R.; Fink, K.; Williams, B.; Nelson-White, T.; Craig, R. The neglected morula/compact stage embryo transfer. Hum. Reprod. 2002, 17, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Balaban, B.; Brison, D.; Calderon, G.; Catt, J.; Conaghan, J.; Cowan, L.; Ebner, T.; Gardner, D.; Hardarson, T.; Lundin, K.; et al. Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Reprod. Biomed. Online 2011, 22, 632–646. [Google Scholar] [CrossRef] [Green Version]
- Stigliani, S.; Massarotti, C.; Bovis, F.; Casciano, I.; Sozzi, F.; Remorgida, V.; Cagnacci, A.; Anserini, P.; Scaruffi, P. Pronuclear score improves prediction of embryo implantation success in ICSI cycles. BMC Pregnancy Childbirth 2021, 21, 361. [Google Scholar] [CrossRef]
- Adamson, G.D.; Abusief, M.E.; Palao, L.; Witmer, J.; Palao, L.M.; Gvakharia, M. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse–enabled test to aid in embryo selection. Fertil. Steril. 2016, 105, 369–375.e6. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, L.; Saeedi, P.; Au, J.; Havelock, J. Multi-Label Classification for Automatic Human Blastocyst Grading with Severely Imbalanced Data. In Proceedings of the 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), Kuala Lumpur, Malaysia, 27–29 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Yu, Y.; Zhang, X.W. Overall Blastocyst Quality, Trophectoderm Grade, and Inner Cell Mass Grade Predict Pregnancy Outcome in Euploid Blastocyst Transfer Cycles. Chin. Med. J. 2018, 131, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Déniz, F.P.; Encinas, C.; La Fuente, J. Morphological embryo selection: An elective single embryo transfer proposal. J. Bras. Reprod. Assist. 2018, 22, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Behr, B. Blastocyst culture and transfer. Hum. Reprod. 1999, 14, 5–6. [Google Scholar] [CrossRef] [Green Version]
- Lagalla, C.; Barberi, M.; Orlando, G.; Sciajno, R.; Bonu, M.A.; Borini, A. A quantitative approach to blastocyst quality evaluation: Morphometric analysis and related IVF outcomes. J. Assist. Reprod. Genet. 2015, 32, 705–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Q.; Zhang, Q.; Feng, X.; Huang, H.; Xu, H.; Tian, B.; Liu, J.; Yu, Q.; Guo, N.; Liu, Q.; et al. Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring. Commun. Biol. Biol. 2021, 4, 415. [Google Scholar] [CrossRef]
- Saiz, I.C.; Gatell, M.C.P.; Vargas, M.C.; Mendive, A.D.; Enedáguila, N.R.; Solanes, M.M.; Canal, B.C.; López, J.T.; Bonet, A.B.; de Mendoza Acosta, M.V.H. The Embryology Interest Group: Updating ASEBIR’s morphological scoring system for early embryos, morulae and blastocysts. Med. Reprod. Embriol. Clín. 2018, 5, 42–54. [Google Scholar] [CrossRef]
- Miklosova, M.; Sivrev, D. Methods of embryo selection: Positive and negative state of selected methodologies. Trakia J. Sci. 2015, 13, 24–28. [Google Scholar] [CrossRef]
- Montag, M.; Toth, B.; Strowitzki, T. New approaches to embryo selection. Reprod. Biomed. Online 2013, 27, 539–546. [Google Scholar] [CrossRef]
- Kan-Tor, Y.; Zabari, N.; Erlich, I.; Szeskin, A.; Amitai, T.; Richter, D.; Or, Y.; Shoham, Z.; Hurwitz, A.; Har-Vardi, I.; et al. Automated Evaluation of Human Embryo Blastulation and Implantation Potential using Deep-Learning. Adv. Intell. Syst. 2020, 2, 2000080. [Google Scholar] [CrossRef]
- Gardner, D.K.; Harvey, A.J. Blastocyst metabolism. Reprod. Fertil. Dev. 2015, 27, 638–654. [Google Scholar] [CrossRef]
- Richardson, A.; Brearley, S.; Ahitan, S.; Chamberlain, S.; Davey, T.; Zujovic, L.; Hopkisson, J.; Campbell, B.; Raine-Fenning, N. A clinically useful simplified blastocyst grading system. Reprod. Biomed. Online 2015, 31, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardarson, T.; Van Landuyt, L.; Jones, G. The blastocyst. Hum. Reprod. 2012, 27 (Suppl. S1), 72–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.; Inge, K.L.; Suzman, M.; Wiker, S.R.; Wright, G. Videocinematography of fresh and cryopreserved embryos: A retrospective analysis of embryonic morphology and implantation. Fertil. Steril. 1989, 51, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.K.; Lane, M.; Schoolcraft, W.B. Culture and transfer of viable blastocysts: A feasible proposition for human IVF. Hum. Reprod. 2000, 15 (Suppl. S6), 9–23. [Google Scholar] [PubMed]
- Gardner, D.K.; Lane, M.; Stevens, J.; Schlenker, T.; Schoolcraft, W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil Steril. 2000, 73, 1155–1158. [Google Scholar] [CrossRef]
- Gardner, D.K.; Schoolcraft, W.B. In Vitro Culture of Human Blastocyst. In Towards Reproductive Certainty: Infertility and Genetics Beyond; Jansen, R., Mortimer, D., Eds.; Parthenon Press: Carnforth, UK, 1999; pp. 378–388. [Google Scholar]
- Lundin, K.; Ahlström, A. Quality control and standardization of embryo morphology scoring and viability markers. Reprod. Biomed. Online 2015, 31, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Gardner, D.K.; Balaban, B. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and ‘OMICS’: Is looking good still important? Mol. Hum. Reprod. 2016, 22, 704–718. [Google Scholar] [CrossRef]
- Burks, C.; Van Heertum, K.; Weinerman, R. The Technological Advances in Embryo Selection and Genetic Testing: A Look Back at the Evolution of Aneuploidy Screening and the Prospects of Non-Invasive PGT. Reprod. Med. 2021, 2, 26–34. [Google Scholar] [CrossRef]
- Santos, E.F.; Noble, J.A.; Poli, M.; Griffiths, T.; Emerson, G.; Wells, D. A method for semi-automatic grading of human blastocyst microscope images. Hum. Reprod. 2012, 27, 2641–2648. [Google Scholar] [CrossRef] [Green Version]
- Kaser, D.J.; Farland, L.V.; Missmer, S.; Racowsky, C. Prospective study of automated versus manual annotation of early time-lapse markers in the human preimplantation embryo. Hum. Reprod. 2017, 32, 1604–1611. [Google Scholar] [CrossRef]
- Bormann, C.L.; Thirumalaraju, P.; Kanakasabapathy, M.K.; Kandula, H.; Souter, I.; Dimitriadis, I.; Gupta, R.; Pooniwala, R.; Shafiee, H. Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil. Steril. 2020, 113, 781–787.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubis, H.P.; Halim, B. Human Blasyocyst Formation and Development. In Embryology—Theory and Practice; Intech Open: Rijeka, Croatia, 2018; p. 13. [Google Scholar] [CrossRef] [Green Version]
- Roy, T.K.; Brandi, S.; Tappe, N.M.; Bradley, C.K.; Vom, E.; Henderson, C.; Lewis, C.; Battista, K.; Hobbs, B.; Hobbs, S.; et al. Embryo vitrification using a novel semi-automated closed system yields in vitro outcomes equivalent to the manual Cryotop method. Hum. Reprod. 2014, 29, 2431–2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Wang, H.; Wang, J.; Wang, Y.; He, F.; Zhang, J. SA-Net: A scale-attention network for medical image segmentation. PLoS ONE 2021, 16, e0247388. [Google Scholar] [CrossRef]
- Au, J.K.; Tian, M.; Moradi, R.; Saeedi, P.; Havelock, J.C. Automatic Image Segmentation and Quantitative Component Measurements on Human Blastocyst Images Using Artificial Intelligence (AI) in Assessing Morphology Grading and Predicting Implantation and Live Birth Outcomes. Fertil. Steril. 2020, 114, e145–e146. [Google Scholar] [CrossRef]
- Arteta, C.; Lempitsky, V.; Noble, J.; Zisserman, A. Detecting overlapping instances in microscopy images using extremal region trees. Med. Image Anal. 2016, 27, 3–16. [Google Scholar] [CrossRef]
- Feyeux, M.; Reignier, A.; Mocaer, M.; Lammers, J.; Meistermann, D.; Barrière, P.; Paul-Gilloteaux, P.; David, L.; Fréour, T. Development of automated annotation software for human embryo morphokinetics. Hum. Reprod. 2020, 35, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Badiola, A.; Farias, A.F.-S.; Mendizabal-Ruiz, G.; Garcia-Sanchez, R.; Drakeley, A.J. Development and preliminary validation of an automated static digital image analysis system utilizing machine learning for blastocyst selection. Fertil. Steril. 2019, 112, e149–e150. [Google Scholar] [CrossRef]
- Coticchio, G.; Fiorentino, G.; Nicora, G.; Sciajno, R.; Cavalera, F.; Bellazzi, R.; Garagna, S.; Borini, A.; Zuccotti, M. Cytoplasmic movements of the early human embryo: Imaging and artificial intelligence to predict blastocyst development. Reprod. Biomed. Online 2021, 42, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Badiola, A.; Flores-Saiffe-Farías, A.; Mendizabal-Ruiz, G.; Drakeley, A.; Cohen, J. Embryo Ranking Intelligent Classification Algorithm (ERICA): Artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reprod. Biomed. Online 2020, 41, 585–593. [Google Scholar] [CrossRef]
- Berntsen, J.; Rimestad, J.; Lassen, J.; Tran, D.; Kragh, M.F. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences. PLoS ONE 2022, 17, e0262661. [Google Scholar] [CrossRef]
- McQuin, C.; Goodman, A.; Chernyshev, V.; Kamentsky, L.; Cimini, B.A.; Karhohs, K.W.; Doan, M.; Ding, L.; Rafelski, S.M.; Thirstrup, D.; et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 2018, 16, e2005970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. BLAST-NET: Semantic Segmentation of Human Blastocyst Components via Cascaded Atrous Pyramid and Dense Progressive Upsampling. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1865–1869. [Google Scholar] [CrossRef]
- Chéles, D.S.; Ferreira, A.S.; de Jesus, I.S.; Fernandez, E.I.; Pinheiro, G.M.; Dal Molin, E.A.; Alves, W.; de Souza, R.C.M.; Bori, L.; Meseguer, M.; et al. An Image Processing Protocol to Extract Variables predictive of human Embryo Fitness for Assisted Reproduction. Appl. Sci. 2022, 12, 3531. [Google Scholar] [CrossRef]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. Human Blastocyst’s Zona Pellucida segmentation via boosting ensemble of complementary learning. Inform. Med. Unlocked 2018, 13, 112–121. [Google Scholar] [CrossRef]
- Harun, M.Y.; Rahman, M.A.; Mellinger, J.; Chang, W.; Huang, T.; Walker, B.; Hori, K.; Ohta, A.T.; Harun, M.Y.; Rahman, A.; et al. Image Segmentation of Zona-Ablated Human Blastocysts. In Proceedings of the IEEE International Conference on Nano/Molecular Medicine and Engineering (NANOMED), Gwangju, Republic of Korea, 21–24 November 2019; pp. 208–213. [Google Scholar] [CrossRef]
- Kheradmand, S.; Singh, A.; Saeedi, P.; Au, J.; Havelock, J. Inner Cell Mass Segmentation in Human HMC Embryo Images using Fully Convolutional Network. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1752–1756. [Google Scholar]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. Multi-resolutional ensemble of stacked dilated U-net for inner cell mass segmentation in human embryonic images. In Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3518–3522. [Google Scholar] [CrossRef]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. Trophectoderm segmentation in human embryo images via inceptioned U-Net. Med. Image Anal. 2020, 62, 101612. [Google Scholar] [CrossRef] [PubMed]
- Bashar, M.K.; Yoshida, H.; Yamagata, K. Embryo quality analysis from four dimensional microscopy images: A preliminary study. In Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 8–10 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Horak, K.; Sablatnig, R. Deep learning concepts and datasets for image recognition: Overview 2019. In Proceedings of the Eleventh International Conference on Digital Image Processing, Guangzhou, China, 10–13 May 2019; p. 100. [Google Scholar] [CrossRef]
- Strouthopoulos, C.; Anifandis, G. An automated blastomere identification method for the evaluation of day 2 embryos during IVF/ICSI treatments. Comput. Methods Programs Biomed. 2018, 156, 53–59. [Google Scholar] [CrossRef]
- Saeedi, P.; Yee, D.; Au, J.; Havelock, J. Automatic Identification of Human Blastocyst Components via Texture. IEEE Trans. Biomed. Eng. 2017, 64, 2968–2978. [Google Scholar] [CrossRef]
- Eyke, H.; Rifqi, M. A Fuzzy Variant of the Rand Index for Comparing Clustering Structures. In Proceedings of the 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, IFSA-EUSFLAT, Lisbon, Portugal, 20–24 July 2009. [Google Scholar]
- Rocha, J.; Passalia, F.; Matos, F.; Al, E. Automatized image processing of bovine blastocysts produced in vitro for quantitative variable determination. Sci. Data 2017, 4, 170192. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.T.F.; Kosasa, T.; Walker, B.; Arnett, C.; Huang, C.T.; Yin, C.; Harun, Y.; Ahn, H.J.; Ohta, A. Deep learning neural network analysis of human blastocyst expansion from time-lapse image files. Reprod. Biomed. Online 2021, 42, 1075–1085. [Google Scholar] [CrossRef]
- Arsalan, M.; Haider, A.; Choi, J.; Park, K.R. Detecting Blastocyst Components by Artificial Intelligence for Human Embryological Analysis to Improve Success Rate of In Vitro Fertilization. J. Pers. Med. 2022, 12, 124. [Google Scholar] [CrossRef]
- Singh, A.; Au, J.; Saeedi, P.; Havelock, J. Automatic segmentation of trophectoderm in microscopic images of human blastocysts. IEEE Trans. Biomed. Eng. 2015, 62, 382–393. [Google Scholar] [CrossRef]
- Khosravi, P.; Kazemi, E.; Zhan, Q.; Malmsten, J.E.; Toschi, M.; Zisimopoulos, P.; Sigaras, A.; Lavery, S.; Cooper, L.A.D.; Hickman, C.; et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. Digit. Med. 2019, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Li, H.; Li, R.; Li, Y.; Luo, X.; Li, T.C.; Lee, T.L.; Wang, W.J.; Chan, D.Y.L. Automated and precise recognition of human zygote cytoplasm: A robust image-segmentation system based on a convolutional neural network. Biomed. Signal Process. Control 2019, 67, 102551. [Google Scholar] [CrossRef]
- Blank, C.; Wildeboer, R.R.; DeCroo, I.; Tilleman, K.; Weyers, B.; De Sutter, P.; Mischi, M.; Schoot, B.C. Prediction of implantation after blastocyst transfer in in vitro fertilization: A machine-learning perspective. Fertil. Steril. 2019, 111, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Kuchana, M.; Ayyagari, K.P.R. Machine learning predicts live-birth occurrence before in-vitro fertilization treatment. Sci. Rep. 2020, 10, 20925. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.C.; Da Silva, D.; Dos Santos, J.; Whyte, L.; Hickman, C.; Lavery, S.; Nogueira, M. Using artificial intelligence to improve the evaluation of human blastocyst morphology. In Proceedings of the 9th International Joint Conference on Computational Intelligence (IJCCI), Madeira, Portugal, 1–3 November 2017; pp. 354–359. [Google Scholar] [CrossRef]
- Rocha, J.C.; Passalia, F.J.; Matos, F.D.; Takahashi, M.B.; Ciniciato, D.d.S.; Maserati, M.P.; Alves, M.F.; de Almeida, T.G.; Cardoso, B.L.; Basso, A.C.; et al. A Method Based on Artificial Intelligence to Fully Automatized the Evaluation of Bovine Blastocyst Images. Sci. Rep. 2017, 7, 7659. [Google Scholar] [CrossRef] [Green Version]
- Kheradmand, S.; Saeedi, P.; Bajic, I. Human blastocyst segmentation using neural network. In Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 15–18 May 2016; pp. 5–8. [Google Scholar] [CrossRef]
- Nogueira, M.F.G.; Guilherme, V.B.; Pronunciate, M.; Santos, P.D.; da Silva, D.L.B.; Rocha, J.C. Artificial Intelligence-Based Grading Quality of Bovine Blastocyst Digital Images: Direct Capture with Juxtaposed Lenses of Smartphone Camera and Stereomicroscope Ocular Lens. Sensors 2018, 18, 4440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavez-Badiola, A.; Farias, A.F.-S.; Mendizabal-Ruiz, G.; Valencia, R.; Drakeley, A.J. Automated Identification of Degraded Areas Within Blastocysts By Means of Artificial Vision. Fertil. Steril. 2020, 114, e138. [Google Scholar] [CrossRef]
- Milyea, M.V.; Hall, J.M.M.; Diakiw, S.M.; Johnston, A.; Nguyen, T.; Perugini, D.; Miller, A.; Picou, A.; Murphy, A.P.; Perugini, M. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 2021, 35, 770–784. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Pan, W.; Jin, L.; Li, Y.; Geng, Y.; Gao, C.; Chen, G.; Wang, H.; Ma, D.; Liao, S. Artificial intelligence in reproductive medicine. Reproduction 2019, 158, R139–R154. [Google Scholar] [CrossRef]
- Mölder, A.; Drury, S.; Costen, N.; Hartshorne, G.M.; Czanner, S. Semiautomated analysis of embryoscope images: Using localized variance of image intensity to detect embryo developmental stages. Cytom. Part A 2015, 87, 119–128. [Google Scholar] [CrossRef]
- Brunetti, X.; Cawood, S.; Gaunt, M.; Saab, W.; Serhal, P.; Seshadri, S. The First Livebirth Using Warmed Oocytes by a Semi-Automated Vitrification Procedure. J. Reprod. Infertil. 2021, 22, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.H.; Nascimento, M.; Oliveira, D.L.; Neves, L.A.; Annes, K. Algorithms for automatic segmentation of bovine embryos produced in vitro. J. Phys. Conf. Ser. 2014, 490, 4–8. [Google Scholar] [CrossRef]
- Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [Google Scholar] [CrossRef]
- Bormann, C.L.; Kanakasabapathy, M.K.; Thirumalaraju, P.; Gupta, R.; Pooniwala, R.; Kandula, H.; Hariton, E.; Souter, I.; Dimitriadis, I.; Ramirez, L.; et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation. eLife 2020, 9, e55301. [Google Scholar] [CrossRef]
- Kanakasabapathy, M.K.; Thirumalaraju, P.; Bormann, C.L.; Kandula, H.; Dimitriadis, I.; Souter, I.; Yogesh, V.; Pavan, S.K.S.; Yarravarapu, D.; Gupta, R.; et al. Development and evaluation of inexpensive automated deep learning-based imaging systems for embryology. Lab Chip 2019, 19, 4139–4145. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.; Walker, B.C.; Harun, M.Y.; Ohta, A.T.; Rahman, M.A.; Mellinger, J.; Chang, W. Automated computer analysis of human blastocyst expansion from embryoscope time-lapse image files. Fertil. Steril. 2019, 112, e292–e293. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, C.; Zhang, D.; Chen, L.; Sun, H. A deep learning framework design for automatic blastocyst evaluation with multifocal images. IEEE Access 2021, 9, 18927–18934. [Google Scholar] [CrossRef]
- Wu, C.; Yan, W.; Li, H.; Li, J.; Wang, H.; Chang, S.; Yu, T.; Ma, C.; Luo, Y.; Yi, D.; et al. A classification system of day 3 human embryos using deep learning. Biomed. Signal Process. Control 2021, 70, 102943. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, S.; Gu, Y.; Gong, F.; Kong, L.; Lu, G.; Lin, G.; Liang, B.; Hu, L. Non-invasive Metabolomic Profiling of Embryo Culture Medium Using Raman Spectroscopy With Deep Learning Model Predicts the Blastocyst Development Potential of Embryos. Front. Physiol. 2021, 12, 2073. [Google Scholar] [CrossRef]
- Kragh, M.F.; Rimestad, J.; Berntsen, J.; Karstoft, H. Automatic grading of human blastocysts from time-lapse imaging. Comput. Biol. Med. 2019, 115, 103494. [Google Scholar] [CrossRef]
- Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaninovic, N.; Rosenwaks, Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil. Steril. 2020, 114, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Parvathavarthine, K.; Balasubramanian, R. Optimized Residual Convolutional Learning Neural Network for Intrapartum Maternal-Embryo Risk Assessment. Eur. J. Mol. Clin. Med. 2020, 7, 2985–3006. [Google Scholar]
- Kora, P.; Ooi, C.P.; Faust, O.; Raghavendra, U.; Gudigar, A.; Chan, W.Y.; Meenakshi, K.; Swaraja, K.; Plawiak, P.; Acharya, U.R. Transfer learning techniques for medical image analysis: A review. Biocybern. Biomed. Eng. 2022, 42, 79–107. [Google Scholar] [CrossRef]
- Septiandri, A.A.; Jamal, A.; Iffanolida, P.; Riayati, O.; Wiweko, B. Human Blastocyst Classification after in Vitro Fertilization Using Deep Learning. In Proceedings of the 2020 7th International Conference on Advance Informatics: Concepts, Theory and Applications (ICAICTA), Tokoname, Japan, 8–9 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Shen, C.; Lamba, A.; Zhu, M.; Zhang, R.; Zernicka-Goetz, M.; Yang, C. Stain-free detection of embryo polarization using deep learning. Sci. Rep. 2022, 12, 2404. [Google Scholar] [CrossRef]
- Chen, T.-J.; Zheng, W.-L.; Liu, C.-H.; Huang, I.; Lai, H.-H.; Liu, M. Using Deep Learning with Large Dataset of Microscope Images to Develop an Automated Embryo Grading System. Fertil. Reprod. 2019, 1, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Senders, J.; Zaki, M.; Karhade, A.; Chang, B.; Gormley, W.; Broekman, M.; Smith, T.; Arnaout, O. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir. 2018, 160, 29–38. [Google Scholar] [CrossRef]
- Loewke, K.; Cho, J.H.; Brumar, C.D.; Maeder-York, P.; Barash, O.; Malmsten, J.E.; Zaninovic, N.; Sakkas, D.; Miller, K.A.; Levy, M.; et al. Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos. Fertil. Steril. 2022, 117, 528–535. [Google Scholar] [CrossRef]
- Dimitriadis, I.; Bormann, C.; Thirumalaraju, P.; Kanakasabapathy, M.; Gupta, R.; Pooniwala, R.; Souter, I.; Hsu, J.; Rice, S.; Bhowmick, P.; et al. Artificial intelligence-enabled system for embryo classification and selection based on image analysis. Fertil. Steril. 2019, 111, e21. [Google Scholar] [CrossRef] [Green Version]
- Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-enabled medical computer vision. NPJ Digit. Med. 2021, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Raef, B.; Ferdousi, R. A Review of Machine Learning Approaches in Assisted Reproductive Technologies. Acta Inform. Med. 2019, 27, 205–211. [Google Scholar] [CrossRef]
- Merican, Z.Z.; Yusof, U.; Abdullah, N.L. Review on embryo selection based on morphology using machine learning methods. Int. J. Adv. Soft Comput. Its Appl. 2021, 13, 44–59. [Google Scholar]
- Aherin, D.G.; Bormann, J.; Stamm, J.H.; MacNeil, M.; Weaber, R. Decision-making tools: Stochastic simulation model accounting for the impacts of biological variation on success of bovine embryo transfer programs. Transl. Anim. Sci. 2018, 2, 451–462. [Google Scholar] [CrossRef]
- Niakan, K.K.; Eggan, K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 2013, 375, 54–64. [Google Scholar] [CrossRef]
Stage | Timing (h) [17] | Expected Features Developed [17] | Ideal Morphology Features/Visibility [18] |
---|---|---|---|
Pronuclear (Day 0) | 17 ± 1 | Pronucleate oocyte | (i) NPB 1 < 3 (ii) NPB always polarized |
Cleavage (Day 1) | 23 ± 1 to 26 ± 1 (post ICSI 2), 28 ± 1 (post IVF) | Up to 20% may be at or reach the two-cell stage | (i) Mononucleated blastomeres (ii) Equal cell sizes (iii) <20% fragmentation |
Cleavage (Day 2) | 44 ± 1 | Four-cell stage | (i) Mononucleated blastomeres (ii) Equal cell sizes (iii) <20% fragmentation |
Cleavage (Day 3) | 68 ± 1 | Eight-cell stage | (i) Mononucleated blastomeres (ii) Equal cell sizes (iii) <20% fragmentation iv) at least seven blastomeres |
Morula (Day 4) | 92 ± 2 | Compaction volume | (i) Compacted cells (by increase in embryo and ZP space) (ii) Lack of fragments |
Blastocyst (Day 5/6/7) | 116 ± 2 | Fully expanded, through-to-hatched | (i) Expanded blastocoel cavity (ii) Composed of many inner cells mass (iii) Cohesive epithelium cells at TE (trophectoderm) (iv) Zona Pellucida (ZP) thinning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isa, I.S.; Yusof, U.K.; Mohd Zain, M. Image Processing Approach for Grading IVF Blastocyst: A State-of-the-Art Review and Future Perspective of Deep Learning-Based Models. Appl. Sci. 2023, 13, 1195. https://doi.org/10.3390/app13021195
Isa IS, Yusof UK, Mohd Zain M. Image Processing Approach for Grading IVF Blastocyst: A State-of-the-Art Review and Future Perspective of Deep Learning-Based Models. Applied Sciences. 2023; 13(2):1195. https://doi.org/10.3390/app13021195
Chicago/Turabian StyleIsa, Iza Sazanita, Umi Kalsom Yusof, and Murizah Mohd Zain. 2023. "Image Processing Approach for Grading IVF Blastocyst: A State-of-the-Art Review and Future Perspective of Deep Learning-Based Models" Applied Sciences 13, no. 2: 1195. https://doi.org/10.3390/app13021195
APA StyleIsa, I. S., Yusof, U. K., & Mohd Zain, M. (2023). Image Processing Approach for Grading IVF Blastocyst: A State-of-the-Art Review and Future Perspective of Deep Learning-Based Models. Applied Sciences, 13(2), 1195. https://doi.org/10.3390/app13021195