Sustainable Microalgal Harvesting Process Applying Opuntia cochenillifera: Process Parameters Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae and Culture Medium
2.2. Cultivation of C. vulgaris in an Outdoor Photobioreactor
2.3. Microalgal Growth Monitoring
2.4. Coagulant Preparation: O. cochenilifera
2.5. Coagulation/Flocculation and Sedimentation Tests
3. Results and Discussion
3.1. Assessment of C. vulgaris Growth in an Outdoor Photobioreactor
3.2. Coagulation/Flocculation and Sedimentation of the C. vulgaris Culture
3.3. C. vulgaris Sedimentation Kinetics after the use of O. cochenillifera
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chanda, M.-J.; Merghoub, N.; El Arroussi, H. Microalgae polysaccharides: The new sustainable bioactive products for the development of plant bio-stimulants? World J. Microbiol. Biotechnol. 2019, 35, 177. [Google Scholar] [CrossRef] [PubMed]
- Dawiec-Liśniewska, A.; Podstawczyk, D.; Bastrzyk, A.; Czuba, K.; Pacyna-Iwanicka, K.; Okoro, O.V.; Shavandi, A. New trends in biotechnological applications of photosynthetic microorganisms. Biotechnol. Adv. 2022, 59, 107988. [Google Scholar] [CrossRef] [PubMed]
- El Gamal, A.A. Biological importance of marine algae. Saudi Pharm. J. 2010, 18, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ighalo, J.O.; Dulta, K.; Kurniawan, S.B.; Omoarukhe, F.O.; Ewuzie, U.; Eshiemogie, S.O.; Ojo, A.U.; Abdullah, S.R.S. Progress in microalgae application for CO2 sequestration. Clean. Chem. Eng. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Peter, A.P.; Koyande, A.K.; Chew, K.W.; Ho, S.-H.; Chen, W.-H.; Chang, J.-S.; Krishnamoorthy, R.; Banat, F.; Show, P.L. Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renew. Sustain. Energy Rev. 2022, 154, 111852. [Google Scholar] [CrossRef]
- Russell, C.; Rodriguez, C.; Yaseen, M. High-value biochemical products & applications of freshwater eukaryotic microalgae. Sci. Total Environ. 2021, 809, 151111. [Google Scholar]
- Li, S.; Hu, T.; Xu, Y.; Wang, J.; Chu, R.; Yin, Z.; Mo, F.; Zhu, L. A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110005. [Google Scholar] [CrossRef]
- Udayan, A.; Sirohi, R.; Sreekumar, N.; Sang, B.-I.; Sim, S.J. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. Bioresour. Technol. 2022, 344, 126406. [Google Scholar] [CrossRef]
- Ricceri, F.; Malaguti, M.; Derossi, C.; Zanetti, M.; Riggio, V.; Tiraferri, A. Microalgae biomass concentration and reuse of water as new cultivation medium using ceramic membrane filtration. Chemosphere 2022, 307, 135724. [Google Scholar] [CrossRef]
- Wang, S.-K.; Stiles, A.R.; Guo, C.; Liu, C.-Z. Harvesting microalgae by magnetic separation: A review. Algal Res. 2015, 9, 178–185. [Google Scholar] [CrossRef]
- Bamba, B.S.; Lozano, P.; Ouattara, A.; Elcik, H. Pilot-scale microalgae harvesting with ceramic microfiltration modules: Evaluating the effect of operational parameters and membrane configuration on filtration performance and membrane fouling. J. Chem. Technol. Biotechnol. 2021, 96, 603–612. [Google Scholar] [CrossRef]
- Min, K.H.; Kim, D.H.; Ki, M.-R.; Pack, S.P. Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. Bioresour. Technol. 2022, 344, 126404. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, S.B.; Ahmad, A.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Potential of microalgae cultivation using nutrient-rich wastewater and harvesting performance by biocoagulants/bioflocculants: Mechanism, multi-conversion of biomass into valuable products, and future challenges. J. Clean. Prod. 2022, 365, 132806. [Google Scholar] [CrossRef]
- Saliu, T.D.; Lawal, I.A.; Akinyeye, O.J.; Bulu, Y.I.; Klink, M.; Ololade, I.A.; Oladoja, N.A. Biocoagulant with frother properties for harvesting Invasive microalgae colonies from the eutrophicated system. ACS Sustain. Chem. Eng. 2022, 10, 5024–5034. [Google Scholar] [CrossRef]
- Ahmad, A.; Kurniawan, S.B.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Exploring the extraction methods for plant-based coagulants and their future approaches. Sci. Total Environ. 2021, 818, 151668. [Google Scholar] [CrossRef]
- Yin, C.-Y. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 2010, 45, 1437–1444. [Google Scholar] [CrossRef] [Green Version]
- Kapse, G.; Samadder, S. Moringa oleifera seed defatted press cake based biocoagulant for the treatment of coal beneficiation plant effluent. J. Environ. Manag. 2021, 296, 113202. [Google Scholar] [CrossRef]
- Udom, I.; Zaribaf, B.H.; Halfhide, T.; Gillie, B.; Dalrymple, O.; Zhang, Q.; Ergas, S.J. Harvesting microalgae grown on wastewater. Bioresour. Technol. 2013, 139, 101–106. [Google Scholar] [CrossRef]
- Ogbonna, C.N.; Nwoba, E.G. Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review. Renew. Sustain. Energy Rev. 2021, 139, 110690. [Google Scholar] [CrossRef]
- Jadhav, M.V.; Mahajan, Y.S. Assessment of feasibility of natural coagulants in turbidity removal and modeling of coagulation process. Desalination Water Treat. 2014, 52, 5812–5821. [Google Scholar] [CrossRef]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Raillani, B.; Mezrhab, A.; Amraqui, S.; Moussaoui, M.A.; Mezrhab, A. Regression-based spatial GIS analysis for an accurate assessment of renewable energy potential. Energy Sustain. Dev. 2022, 69, 118–133. [Google Scholar] [CrossRef]
- Rice, E.; Baird, R.; Eaton, A. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association (APHA): Washington, DC, USA; American Water Works Association (AWWA): Washington, DC, USA; Water Environment Federation (WEF): Washington DC, USA, 2017. [Google Scholar]
- Yu, L.; Li, T.; Ma, J.; Zhao, Q.; Wensel, P.; Lian, J.; Chen, S. A kinetic model of heterotrophic and mixotrophic cultivation of the potential biofuel organism microalgae Chlorella Sorokiniana. Algal Res. 2022, 64, 102701. [Google Scholar] [CrossRef]
- Silva, D.A.; Cardoso, L.G.; de Jesus Silva, J.S.; de Souza, C.O.; Lemos, P.V.F.; de Almeida, P.F.; de Souza Ferreira, E.; Lombardi, A.T.; Druzian, J.I. Strategy for the cultivation of Chlorella vulgaris with high biomass production and biofuel potential in wastewater from the oil industry. Environ. Technol. Innov. 2022, 25, 102204. [Google Scholar] [CrossRef]
- Zara, R.F.; Thomazini, M.H.; Lenz, G.F. Estudo da eficiência de polímero natural extraído do cacto mandacaru (Cereus jamacaru) como auxiliar nos processos de coagulação e floculação no tratamento de água. Rev. Estud. Ambient. 2012, 14, 75–83. [Google Scholar]
- Hasan, M.; Khalekuzzaman, M.; Hossain, N.; Alamgir, M. Anaerobic digested effluent phycoremediation by microalgae co-culture and harvesting by Moringa oleifera as natural coagulant. J. Clean. Prod. 2021, 292, 126042. [Google Scholar] [CrossRef]
- Vu, H.P.; Nguyen, L.N.; Emmerton, B.; Wang, Q.; Ralph, P.J.; Nghiem, L.D. Factors governing microalgae harvesting efficiency by flocculation using cationic polymers. Bioresour. Technol. 2021, 340, 125669. [Google Scholar] [CrossRef]
- Wang, X.-X.; Zhang, T.-Y.; Dao, G.-H.; Xu, Z.-B.; Wu, Y.-H.; Hu, H.-Y. Assessment and mechanisms of microalgae growth inhibition by phosphonates: Effects of intrinsic toxicity and complexation. Water Res. 2020, 186, 116333. [Google Scholar] [CrossRef]
- Soto-Ramírez, R.; Lobos, M.-G.; Córdova, O.; Poirrier, P.; Chamy, R. Effect of growth conditions on cell wall composition and cadmium adsorption in Chlorella vulgaris: A new approach to biosorption research. J. Hazard. Mater. 2021, 411, 125059. [Google Scholar] [CrossRef]
- Chang, H.-X.; Huang, Y.; Fu, Q.; Liao, Q.; Zhu, X. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Bioresour. Technol. 2016, 206, 231–238. [Google Scholar] [CrossRef]
- Feng, P.; Yang, K.; Xu, Z.; Wang, Z.; Fan, L.; Qin, L.; Zhu, S.; Shang, C.; Chai, P.; Yuan, Z. Growth and lipid accumulation characteristics of Scenedesmus obliquus in semi-continuous cultivation outdoors for biodiesel feedstock production. Bioresour. Technol. 2014, 173, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Muylaert, K.; Vankelecom, I.F. Synergy between membrane filtration and flocculation for harvesting microalgae. Sep. Purif. Technol. 2020, 240, 116603. [Google Scholar] [CrossRef]
- Sakarika, M.; Kornaros, M. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresour. Technol. 2016, 219, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Oshita, K.; Takaoka, M. Flocculation properties of eight microalgae induced by aluminum chloride, chitosan, amphoteric polyacrylamide, and alkaline: Life-cycle assessment for screening species and harvesting methods. Algal Res. 2021, 54, 102226. [Google Scholar] [CrossRef]
- Dias, A.; Borges, A.C.; Rosa, A.P.; Martins, M.A. Green coagulants recovering Scenedesmus obliquus: An optimization study. Chemosphere 2021, 262, 127881. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.; Balasubramanian, P. Natural plant extracts as an economical and ecofriendly alternative for harvesting microalgae. Bioresour. Technol. 2019, 283, 45–52. [Google Scholar] [CrossRef]
- Vishali, S.; Mullai, P.; Mahboob, S.; Al-Ghanim, K.; Sivasankar, A. Elucidation the influence of design variables on coagulation–flocculation mechanisms in the lab-scale bio-coagulation on toxic industrial effluent treatment. Environ. Res. 2022, 212, 113224. [Google Scholar] [CrossRef]
- Ghazvini, M.; Kavosi, M.; Sharma, R.; Kim, M. A review on mechanical-based microalgae harvesting methods for biofuel production. Biomass Bioenergy 2022, 158, 106348. [Google Scholar] [CrossRef]
Extract Coagulant Dosage (g L−1) | Eluent | (OD750 nm)1 | (OD750 nm)2 | (OD750 nm)3 | Harvesting Efficiency (%) after Flocculation | Harvesting Efficiency (%) after Sedimentation |
---|---|---|---|---|---|---|
0 (control) | - | 0.2030 | - | 0.1400 | - | 31.0% |
3.5 | 0.10 M HCl | 0.2030 | 0.0440 | 0.0390 | 78.32% | 80.8% |
5.9 | 0.0560 | 0.0430 | 72.41% | 78.8% | ||
8.2 | 0.0700 | 0.0550 | 65.51% | 72.9% | ||
3.5 | 0.10 M NaOH | 0.2030 | 0.0440 | 0.0010 | 78.32% | 99.5% |
5.9 | 0.0670 | 0.0015 | 66.99% | 99.3% | ||
8.2 | 0.1270 | 0.0014 | 37.44% | 99.3% |
Eluent | Extract Coagulant Dosage (g L−1) | Average Speed of Sedimentation (cm s−1) | Correlation Coefficient (R2) |
---|---|---|---|
- | 0 (control) | 0.163 ± 0.008 | 0.98 |
HCl | 3.5 | 0.30 ± 0.05 | 0.95 |
5.9 | 0.29 ± 0.03 | 0.97 | |
8.2 | 0.25 ± 0.03 | 0.95 | |
NaOH | 3.5 | 0.181 ± 0.008 | 0.99 |
5.9 | 0.172 ± 0.007 | 0.99 | |
8.2 | 0.166± 0.004 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.R.d.S.; Santos, R.d.S.; Matos, R.A.; Pires, J.C.M.; Salgado, E.M. Sustainable Microalgal Harvesting Process Applying Opuntia cochenillifera: Process Parameters Optimization. Appl. Sci. 2023, 13, 1203. https://doi.org/10.3390/app13021203
Rodrigues JRdS, Santos RdS, Matos RA, Pires JCM, Salgado EM. Sustainable Microalgal Harvesting Process Applying Opuntia cochenillifera: Process Parameters Optimization. Applied Sciences. 2023; 13(2):1203. https://doi.org/10.3390/app13021203
Chicago/Turabian StyleRodrigues, Jacqueline R. da S., Ramon da S. Santos, Rayssa A. Matos, José C. M. Pires, and Eva M. Salgado. 2023. "Sustainable Microalgal Harvesting Process Applying Opuntia cochenillifera: Process Parameters Optimization" Applied Sciences 13, no. 2: 1203. https://doi.org/10.3390/app13021203
APA StyleRodrigues, J. R. d. S., Santos, R. d. S., Matos, R. A., Pires, J. C. M., & Salgado, E. M. (2023). Sustainable Microalgal Harvesting Process Applying Opuntia cochenillifera: Process Parameters Optimization. Applied Sciences, 13(2), 1203. https://doi.org/10.3390/app13021203