Combined Use of an Information System and LCA Approach to Assess the Performances of a Solid Waste Management System
Abstract
:1. Introduction
2. A Case Study for the MSW Management of the Procida Island
2.1. The System under Analysis and the Functional Unit
2.2. Life Cycle Inventory
2.3. Life Cycle Impact Assessment
2.4. Interpretation
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Acronyms
AD | Anaerobic Digestion |
APC | Air Pollution Control |
BOD5 | Biochemical Oxygen Demand |
CHP | Combined Heat and Power |
COD | Chemical Oxygen Demand |
EC | European Community |
EU | European Union |
EWC | European Waste Code |
FU | Functional Unit |
GW | Global Warming |
LCA | Life-Cycle Assessment |
LCI | Life-Cycle Inventory |
LCIA | Life-Cycle Impact Assessment |
LHV | Low Heating Value |
LO | Land Occupation |
MFA | Material Flow Analysis |
MRF | Material Recovery Facility |
MSW | Municipal Solid Waste |
NC | Non-Carcinogens |
NRE | Non-Renewable Energy |
PCB | Polychlorinated Biphenyls |
PCDD/DF | Polybrominated Dibenzo-p-Dioxins/Furans |
PE | Polyethylene |
PET | Polyethylene Terephthalate |
PHA | Polycyclic Aromatic Hydrocarbons |
PS | Polystyrene |
RI | Respiratory Inorganics |
SME | Small–Medium Enterprise |
SRF | Second Recovered Fuel |
TOC | Total Organic Carbon |
URW | Unsorted Residual Waste |
VOC | Volatile Organic Compounds |
WM | Waste Management |
WtE | Waste-to-Energy |
References
- Weidema, B.; Wesnæs, M. Data quality management for life cycle inventories—An example of using data quality indicators. J. Clean. Prod. 1996, 4, 167–174. [Google Scholar] [CrossRef]
- Clift, R.; Doig, A.; Finnveden, G. The Application of Life Cycle Assessment to Integrated Solid Waste Management. Process. Saf. Environ. Prot. 2000, 78, 279–287. [Google Scholar] [CrossRef]
- Ardolino, F.; Boccia, C.; Arena, U. Environmental performances of a modern waste-to-energy unit in the light of the 2019 BREF document. Waste Manag. 2020, 104, 94–103. [Google Scholar] [CrossRef] [PubMed]
- EC-European Community. DIRECTIVE 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives; EC-European Community: London, UK, 2008. [Google Scholar]
- Christensen, T.; Damgaard, A.; Levis, J.; Zhao, Y.; Björklund, A.; Arena, U.; Barlaz, M.; Starostina, V.; Boldrin, A.; Astrup, T.; et al. Application of LCA modelling in integrated waste management. Waste Manag. 2020, 118, 313–322. [Google Scholar] [CrossRef] [PubMed]
- ISO. Environmental Management-Life Cycle Assessment-Requirements and Guidelines, 1st ed.; ISO: Geneva, Switzerland, 2006; ISO 14044. [Google Scholar]
- W-Mysir, An Information System for Waste Traceability by Microambiente. 2022. Available online: https://wmysir.com/ (accessed on 23 November 2022).
- Ardolino, F.; Berto, C.; Arena, U. Environmental performances of different configurations of a material recovery facility in a life cycle perspective. Waste Manag. 2017, 68, 662–676. [Google Scholar] [CrossRef] [PubMed]
- Ecoinvent. The Life Cycle Inventory Data Version 3.6; Swiss Centre for Life Cycle Inventories: Online, 2022. [Google Scholar]
- Cardamone, G.F.; Ardolino, F.; Arena, U. About the environmental sustainability of the European management of WEEE plastics. Waste Manag. 2021, 126, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Vadenbo, C.; Hellweg, S.; Astrup, T.F. Let’s Be Clear(er) about Substitution: A Reporting Framework to Account for Product Displacement in Life Cycle Assessment. J. Ind. Ecol. 2016, 21, 1078–1089. [Google Scholar] [CrossRef]
- IEA, Country Statistics. Electricity Generation by Source. Italy, 1990–2020. 2022. Available online: https://www.iea.org/countries/italy (accessed on 23 November 2022).
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. LCA 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- SimaPro, Prè Consultants. More info. 2022. Available online: https://simapro.com/ (accessed on 23 November 2022).
- Arena, U.; Ardolino, F. Technical and environmental performances of alternative treatments for challenging plastics waste. Resour. Conserv. Recycl. 2022, 183, 106379. [Google Scholar] [CrossRef]
- Corepla, Prevention Specific Program 2021. 2022. Available online: https://www.corepla.it/sites/default/files/documenti/corepla_rapporto_di_sostenibilita_2021_x_web.pdf (accessed on 23 November 2022). (In Italian).
- Comieco. Prevention Specific Program 2021. 2022. Available online: https://www.comieco.org/downloads/15862/8955/COMIECO_Programma%20specifico%20di%20prevenzione%202021.pdf (accessed on 23 November 2022). (In Italian).
- Coreve. Prevention Specific Program 2022. 2022. Available online: https://coreve.it/wp-content/uploads/2022/07/Psp-Coreve-maggio-2022-dati-2021-31-maggio-2022_def.pdf (accessed on 23 November 2022). (In Italian).
- Ricrea, Relazione Sulla Gestione 2021. Prevention Specific Program. 2022. Available online: https://www.consorzioricrea.org/wp-content/uploads/2022/05/RGPS-RICREA-2022.pdf (accessed on 23 November 2022). (In Italian).
- Cial, Prevention Specific Program 2021. 2022. Available online: https://www.cial.it/wp-content/uploads/2022/05/relazione-sulla-gestione-bilancio-cial-2021-piano-specifico-di-prevenzione-2022.24.pdf (accessed on 23 November 2022). (In Italian).
- Antonopoulos, I.; Faraca, G.; Tonini, D. Recycling of post-consumer plastic packaging waste in the EU: Recovery rates, material flows, and barriers. Waste Manag. 2021, 126, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Faraca, G.; Edjabou, V.M.; Boldrin, A.; Astrup, T. Combustible waste collected at Danish recycling centres: Characterisation, recycling potentials and contribution to environmental savings. Waste Manag. 2019, 89, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Perugini, F.; Mastellone, M.L.; Arena, U. A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes. Environ. Prog. 2005, 24, 137–154. [Google Scholar] [CrossRef]
- CONAI. Program for the Prevention and Management of Packaging and Packaging Waste–English Version. 2022. Available online: https://www.conai.org/download-documenti/ (accessed on 23 November 2022).
- Ardolino, F.; Parrillo, F.; Arena, U. Biowaste-to-Biomethane or Biowaste-to-Energy? An LCA study on Anaerobic Digestion of Organic Waste. J. Clean. Prod. 2018, 174, 462–476. [Google Scholar] [CrossRef]
- MISE–Italian Minister for Economic Development. Interministerial Decree of 2 March 2018. Promotion of the Use of Biomethane and Other Advanced Biofuels in the Transportation Sector; MISE–Italian Minister for Economic Development: Rome, Italy, 2018.
- EC-European Community. EU Reference Scenario 2016. Energy, Transport and GHG Emissions. Trends to 2050. 2016. Available online: https://op.europa.eu/en/publication-detail/-/publication/aed45f8e-63e3-47fb-9440-a0a14370f243 (accessed on 23 November 2022).
Separately Collected Fraction | Input Composition to Sorting | Sorting Efficiency | Input Composition to Remanufacturing | Remanufacturing Efficiency | Substitutability |
---|---|---|---|---|---|
Plastics 1 | |||||
Plastic packaging | 90% | 60% | - | - | - |
Other fractions | 10% | - | - | - | - |
PET | - | - | 35% | 81% | 0.95 |
HDPE | - | - | 9% | 88% | 0.91 |
LDPE | - | - | 18% | 59% | 0.91 |
PP | - | - | 8% | 66% | 0.83 |
PS | - | - | 1% | 66% | 0.79 |
Mixed plastics 2 | - | - | 29% | - | - |
Paper 3 | |||||
Paper and cardboard packaging | 49% | 95% | - | - | - |
Other fractions | 51% | - | - | - | - |
Paper to testliner | - | - | 56% | 95% | 0.9 |
Paper to newspapers | - | - | 44% | 90% | 0.94 |
Glass 4 | |||||
Glass | 100% | 90% | 100% | 100% | 1 |
Metals 5 | |||||
Fe | 82% | 83% | 83% | 88% | 1 |
Non-Fe | 18% | 94% | 17% | 94% | 0.9 |
2011 and 2021 | ||||
---|---|---|---|---|
Plastics | Glass | Paper | Metals | |
Dry Recyclable Waste in, kg | 1000 | 1000 | 1000 | 1000 |
Direct Burdens | ||||
Sorting | ||||
Electricity, kWh | 34 | 7 | 15 | 55 |
Diesel, kg | 2 | - | - | - |
Heat, MJ | - | - | - | 271 |
Residues, kg | 462 | 97 | 532 | 151 |
Re-processing | ||||
Electricity, kWh | 327 | 31 | 252 | 390 |
Heat, MJ | 18.84 | 4157 | 1740 | 1237 |
Water, kg | 973 | - | - | |
Diesel, kg | - | - | 7.5 | 0.2 |
Sodium hydroxide, g | 439 | - | - | 252 |
Methane, MJ | 498 | - | - | - |
HDPE, kg | - | 9.82 | - | - |
Quicklime, kg | - | - | - | 307 |
Sodium chloride, kg | - | - | - | 1.8 |
Hydrated lime, g | - | - | - | 625 |
Nitrogen, g | - | - | - | 508 |
Residues, kg | 132 | - | 34 | 92 |
Air emissions | ||||
CO2 non fossil, kg | - | - | 73 | - |
CO2 fossil, kg | - | - | 150 | - |
CO non fossil, g | - | - | 0.3 | - |
CO fossil, g | - | - | 17 | 0.02 |
N2O, g | - | - | 72 | - |
CH4 fossil, g | - | - | 31 | - |
CH4 non fossil, g | - | - | 0.2 | - |
SO2, g | - | - | 61 | 52 |
AVOIDED BURDENS | ||||
Avoided PE production, kg | 127 | - | - | - |
Avoided PET production, kg | 203 | - | - | - |
Avoided PP production, kg | 34 | - | - | - |
Avoided PS production, kg | 5 | - | - | - |
Avoided glass production, kg | - | 903 | - | - |
Avoided newspaper production, kg | - | - | 173 | - |
Avoided testliner production, kg | - | - | 225 | - |
Avoided steel foils, kg | - | - | - | 600 |
Avoided aluminium billets, kg | - | - | - | 141 |
2011 | 2021 | |
---|---|---|
Composting | Anaerobic Digestion | |
Input, kg | 1000 | 1000 |
Direct Burdens | ||
Consumptions | ||
Water, kg | 528 | 10 |
Diesel for general plant activities, L | 0.96 | 0.3 |
Electric energy, kWh | 53 | - |
Residues | ||
Solid residues to landfill, kg | - | 153 |
Solid digestate to landfill, kg | - | 156 |
Leachate to treatment, kg | 74 | - |
Air emissions | from biofilter | from CHP and biofilter |
NOx, g | - | 336 |
CO, g | - | 278 |
TOC, g | - | 38 |
VOC, g | 484 | - |
PM, g | 35.3 | 3.1 |
SO2, g | - | 41.3 |
H2S, g | 15.5 | - |
HCl, g | - | 6.4 |
Hg, g | 2.6 | 0.01 |
HF, g | - | 0.58 |
NH3, g | 16.7 | 8.55 |
Cd + Tl, g | - | 0.03 |
PCDD/DF, g | - | 3.7 × 10−9 |
PHA, g | - | 0.09 |
Sb, g | - | 0.04 |
As, g | - | 0.04 |
Co, g | - | 0.04 |
Cr, g | - | 0.04 |
Mn, g | - | 0.07 |
Ni, g | - | 0.07 |
Pb, g | - | 0.04 |
Cu, g | - | 0.04 |
Vn, g | - | 0.04 |
Heavy metals, g | 18.8 | - |
Mercaptans, g | 2.6 | - |
Aldehydes, g | 2.6 | - |
Ketones, g | 5.9 | - |
Amine, g | 2.6 | - |
Fat volatile acids, g | 3.3 | - |
Biogenic CO2 from biogas combustion, kg | - | 262 |
Water emissions from liquid digestate treatment | ||
CODmax, g | - | 47 |
BOD5, g | - | 15 |
Suspended solids, g | - | 3 |
NH4, g | - | 1.8 |
AVOIDED BURDENS | ||
Electric energy exported to the grid, kWh | - | 154 |
Compost used for landfill capping, kg | 290 | - |
2011 | 2021 | |
---|---|---|
Input, kg | 1000 | 1000 |
Consumptions | ||
NH3, kg | 2 | 2 |
Hydrated lime, kg | 7.3 | 7.3 |
Activated carbon, kg | 0.5 | 0.5 |
Mixed reagent 1, kg | 0.7 | 0.7 |
Water, kg | 306 | 306 |
Diesel, kg | 0.58 | 0.58 |
Auxiliary fuel, kg | 3.5 | 3.5 |
Air emissions | ||
Biogenic CO2, kg | 493 | 526 |
Fossil CO2, kg | 758 | 1040 |
CO, g | 65 | 65 |
NOx, g | 469 | 469 |
NH3, g | 8 | 8 |
HF, g | 1 | 1 |
HCl, g | 13 | 13 |
SOx, g | 6 | 6 |
Hg, g | 0.0045 | 0.0045 |
Cd + Tl, g | 0.00244 | 0.00244 |
Metals (Sb + As + Pb + Cr + Co + Cu + Mn + Ni + V), g | 0.0593 | 0.0593 |
Dust, g | 2.7 | 2.7 |
VOC, g | 1.1 | 1.1 |
Benzene, g | 0.8 | 0.8 |
Zn, g | 0.054 | 0.054 |
PCDD/DF, I-TEQ, mg | 6.7 × 10−7 | 6.7 × 10−7 |
PCB, WHO-TEQ, mg | 1.15 × 10−7 | 1.15 × 10−7 |
PHA, mg | 7.9 × 10−4 | 7.9 × 10−4 |
Solid residues | ||
Bottom ashes, kg | 165 | 165 |
Fly ash + APC residues kg | 49 | 49 |
AVOIDED BURDENS | ||
Electric energy exported to the grid, kWh | 842 | 1110 |
2011 | 2021 | |
---|---|---|
Transported waste, kg | 1000 | 1000 |
Total transportation by sea, tkm | 13 | 13 |
Total transportation by road, tkm | 116 | 146 |
Which comprises: | ||
URW to mechanical treatment for SRF preparation, tkm | 34.5 | 7.9 |
SRF to WtE, tkm | 8.5 | 3.4 |
Separated metals/biowaste to recovery/biostabilitation, tkm | 17.7 | 4.6 |
Biowaste to biological plants, tkm | 46 | 117 |
Dry materials to sorting + remanufacturing plants, tkm | 8.8 | 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardolino, F.; Parrillo, F.; Di Domenico, C.; Costarella, F.; Arena, U. Combined Use of an Information System and LCA Approach to Assess the Performances of a Solid Waste Management System. Appl. Sci. 2023, 13, 707. https://doi.org/10.3390/app13020707
Ardolino F, Parrillo F, Di Domenico C, Costarella F, Arena U. Combined Use of an Information System and LCA Approach to Assess the Performances of a Solid Waste Management System. Applied Sciences. 2023; 13(2):707. https://doi.org/10.3390/app13020707
Chicago/Turabian StyleArdolino, Filomena, Francesco Parrillo, Carlo Di Domenico, Fabio Costarella, and Umberto Arena. 2023. "Combined Use of an Information System and LCA Approach to Assess the Performances of a Solid Waste Management System" Applied Sciences 13, no. 2: 707. https://doi.org/10.3390/app13020707
APA StyleArdolino, F., Parrillo, F., Di Domenico, C., Costarella, F., & Arena, U. (2023). Combined Use of an Information System and LCA Approach to Assess the Performances of a Solid Waste Management System. Applied Sciences, 13(2), 707. https://doi.org/10.3390/app13020707