Characterization of the Crack and Recrystallization of W/Cu Monoblocks of the Upper Divertor in EAST
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- The region affected by the heat load is concentrated on the leading edge of the mono-blocks, and several macrocracks appear in this area, with a maximum crack depth of 2394 μm. The crack propagation mode is intergranular and extends from the recrystallized region to the deformed area. With the increased heat flux, the crack width is wider.
- (2)
- Recrystallization occurs at the leading-edge area, with a maximum depth of 1122 μm along the H direction and a maximum width of 1333 μm along the W direction. In the No. W511 string, the heat load decreases gradually from #W511-7 to #W511-14, and the temperature from #W511-7 to #W511-13 is higher than the recrystallization temperature. The total length of the leading edge where recrystallization occurs will be at least 70 mm in length.
- (3)
- The Cu/CuCrZr interface of the cooling components is debonded. With the decrease in the heat load, the degree of debonding is reduced. Debonding may occur at the interfaces of W/Cu and Cu/CuCrZr, especially at the Cu/CuCrZr interface.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitts, R.A.; Carpentier, S.; Escourbiac, F.; Hirai, T.; Komarov, V.; Lisgo, S.; Kukushkin, A.S.; Loarte, A.; Merola, M.; Naik, S.A.; et al. A full tungsten divertor for ITER: Physics issues and design status. J. Nucl. Mater. 2013, 438, S48–S56. [Google Scholar] [CrossRef]
- Panayotis, S.; Hirai, T.; Barabash, V.; Amzallag, C.; Escourbiac, F.; Durocher, A.; Komarov, V.; Martines, J.M.; Merola, M. Fracture modes of ITER tungsten divertor monoblock under stationary thermal loads. Fusion Eng. Des. 2017, 125, 256–262. [Google Scholar] [CrossRef]
- Philipps, V. Tungsten as material for plasma-facing components in fusion devices. J. Nucl. Mater. 2011, 415, S2–S9. [Google Scholar] [CrossRef]
- Yao, D.M.; Luo, G.N.; Zhou, Z.B.; Cao, L.; Li, Q.; Wang, W.J.; Li, L.; Qin, S.G.; Shi, Y.L.; Liu, G.H.; et al. Design, R&D and commissioning of EAST tungsten divertor. Phys. Scr. 2016, T167, 014003. [Google Scholar]
- Missirlian, M.; Firdaouss, M.; Richou, M.; Languille, P.; Lecocq, S.; Lipa, M. The WEST project: PFC shaping solutions investigated for the ITER-like W divertor. Fusion Eng. Des. 2013, 88, 1793–1797. [Google Scholar] [CrossRef]
- Horton, L. Operation of JET with an ITER-like Wall. Fusion Eng. Des. 2015, 96–97, 28–33. [Google Scholar] [CrossRef]
- Herrmann, A.; Greuner, H.; Jaksic, N.; Balden, M.; Kallenbach, A.; Krieger, K.; de Marne, P.; Rohde, V.; Scarabosio, A.; Schall, G.; et al. Solid tungsten Divertor-III for ASDEX Upgrade and contributions to ITER. Nucl. Fusion 2015, 55, 063015. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-H.; Kim, K.; Kim, H.; Bang, E.; Choi, H.; Kim, H.-C.; Pitts, R.A. Damage and melting of ITER-like flat-type tungsten castellated blocks exposed to long pulse H-mode plasmas. Fusion Eng. Des. 2018, 136, 1518–1522. [Google Scholar] [CrossRef]
- Hirai, T.; Carpentier-Chouchana, S.; Escourbiac, F.; Panayotis, S.; Durocher, A.; Ferrand, L.; Martines-Garcia, M.; Gunn, J.P.; Komarov, V.; Merola, M.; et al. Design optimization of the ITER tungsten divertor vertical targets. Fusion Eng. Des. 2018, 127, 66–72. [Google Scholar] [CrossRef]
- Federici, G.; Bachmann, C.; Biel, W.; Boccaccini, L.; Cismondi, F.; Ciattaglia, S.; Coleman, M.; Day, C.; Diegele, E.; Franke, T.; et al. Overview of the design approach and prioritization of R&D activities towards an EU DEMO. Fusion Eng. Des. 2016, 109–111, 1464–1474. [Google Scholar]
- Wan, Y.; Li, J.; Liu, Y.; Wang, X.; Chan, V.; Chen, C.; Duan, X.; Fu, P.; Gao, X.; Feng, K.; et al. Overview of the present progress and activities on the CFETR. Nucl. Fusion 2017, 57, 102009. [Google Scholar] [CrossRef]
- Linsmeier, C.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; et al. Development of advanced high heat flux and plasma-facing materials. Nucl. Fusion 2017, 57, 092007. [Google Scholar] [CrossRef]
- Xie, Z.M.; Miao, S.; Liu, R.; Zeng, L.F.; Zhang, T.; Fang, Q.F.; Liu, C.S.; Wang, X.P.; Lian, Y.Y.; Liu, X.; et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices. J. Nucl. Mater. 2017, 496, 41–53. [Google Scholar] [CrossRef]
- Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.N.; Xu, H.Y.; Fu, B.Q.; Li, M.; Liu, W. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads. J. Nucl. Mater. 2013, 433, 523–530. [Google Scholar] [CrossRef]
- Terentyev, D.; Riesch, J.; Lebediev, S.; Bakaeva, A.; Coenen, J.W. Mechanical properties of as-fabricated and 2300 °C annealed tungsten wire tested up to 600 °C. Int. J. Refract. Met. Hard Mater. 2017, 66, 127–134. [Google Scholar] [CrossRef]
- Shah, V.; van Maris, M.P.F.H.L.; van Dommelen, J.A.W.; Geers, M.G.D. Experimental investigation of the microstructural changes of tungsten monoblocks exposed to pulsed high heat loads. Nucl. Mater. Energy 2020, 22, 100716. [Google Scholar] [CrossRef]
- van Eden, G.G.; Morgan, T.W.; van der Meiden, H.J.; Matejicek, J.; Chraska, T.; Wirtz, M.; De Temmereman, G. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling. Nucl. Fusion 2014, 54, 123010. [Google Scholar] [CrossRef] [Green Version]
- Hirai, T.; Pintsuk, G.; Linke, J.; Batilliot, M. Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures. J. Nucl. Mater. 2009, 390–391, 751–754. [Google Scholar] [CrossRef]
- Hirai, T.; Panayotis, S.; Barabash, V.; Amzallag, C.; Escourbiac, F.; Durocher, A.; Merola, M.; Linke, J.; Loewenhoff, T.; Pintsuk, G.; et al. Use of tungsten material for the ITER divertor. Nucl. Mater. Energy 2016, 9, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; You, J.-H. Interpretation of the deep cracking phenomenon of tungsten monoblock targets observed in high-heat-flux fatigue tests at 20 MW/m2. Fusion Eng. Des. 2015, 101, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zan, X.; Yan, J.; Sun, H.; Wang, K.; Lian, Y.; Tan, X.; Luo, L.; Liu, X.; Wu, Y. Surface damage during transient thermal load of 50% thickness reduced W-2% (Vol.) Y2O3 sheet with different recrystallization volume fraction. Int. J. Refract. Met. Hard Mater. 2020, 88, 105197. [Google Scholar] [CrossRef]
- Zhu, D.; Li, C.; Ding, R.; Wang, B.; Chen, J.; Gao, B.; Gu, Y.; Gong, X.; EAST Team. Characterization of the in situ leading-edge-induced melting on the ITER-like tungsten divertor in EAST. Nucl. Fusion 2020, 60, 016036. [Google Scholar] [CrossRef]
- Zhu, D.; Li, C.; Gao, B.; Ding, R.; Wang, B.; Guo, Z.; Xuan, C.; Yu, B.; Lei, Y.; Chen, J. In situ leading-edge-induced damages of melting and cracking W/Cu monoblocks as divertor target during long-term operations in EAST. Nucl. Fusion 2022, 62, 056004. [Google Scholar] [CrossRef]
- Linke, J.; Du, J.; Loewenhoff, T.; Pintsuk, G.; Spilker, B.; Steudel, I.; Wirtz, M. Challenges for plasma-facing components in nuclear fusion. Matter Radiat. Extrem. 2019, 4, 056201. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, T.; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E. High pulse number thermal shock tests on tungsten with steady state particle background. Phys. Scr. 2017, T170, 014066. [Google Scholar] [CrossRef]
- Wan, B. Recent experiments in the EAST and HT-7 superconducting tokamaks. Nucl. Fusion 2009, 49, 104011. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.N.; Liu, G.H.; Li, Q.; Qin, S.G.; Wang, W.J.; Shi, Y.L.; Xie, C.Y.; Chen, Z.M.; Missirlian, M.; Guilhem, D. Overview of decade-long development of plasma-facing components at ASIPP. Nucl. Fusion 2017, 57, 065001. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Luo, G.; Du, S.; Cao, L.; Zhou, Z.; Xu, T.; Ji, C.; Liu, C.; Liang, C.; Li, Q.; et al. Overview of the EAST in-vessel components upgrade. Fusion Eng. Des. 2015, 98–99, 1692–1695. [Google Scholar] [CrossRef]
- Liu, B.; Dai, S.Y.; Kawamura, G.; Zhang, L.; Feng, Y.; Wang, D.Z. 3D effects of neon injection positions on the toroidally symmetric/asymmetric heat flux distribution on EAST. Plasma Phys. Control. Fusion 2020, 62, 035003. [Google Scholar] [CrossRef]
- Li, C.; Zhu, D.; Ding, R.; Wang, B.; Chen, J.; Gao, B.; Lei, Y. Characterization on the melting failure of CuCrZr cooling tube of W/Cu monoblocks during plasma operations in EAST. Nucl. Mater. Energy 2020, 25, 100847. [Google Scholar] [CrossRef]
- Lei, Y.; Zhu, D.; Li, C.; GeSangZhuoMa; Gao, B.; Wang, B.; Ding, R.; Chen, J.; Yu, B.; Xuan, C. Result and discussion on the evolution of in-situ leading edge-induced melting on W divertor targets in EAST. Nucl. Mater. Energy 2021, 27, 100997. [Google Scholar] [CrossRef]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Grain detection from 2d and 3d EBSD data--specification of the MTEX algorithm. Ultramicroscopy 2011, 111, 1720–1733. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhu, D.; Ding, R.; Chen, J. Thermal analysis on the EAST tungsten plasma facing components with shaping structure counteracting the misalignment issues. Plasma Sci. Technol. 2017, 19, 025603. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Nogami, S.; Fukuda, M.; Sakata, A.; Hasegawa, A. Effect of Grain Structure Anisotropy and Recrystallization on Tensile Properties of Swaged Tungsten Rod. Plasma Fusion Res. 2015, 10, 1405073. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.; Xi, Y.; Yan, J.; Zan, X.; Luo, L.; Wu, Y. Surface Damage and Microstructure Evolution of Yttria Particle-Reinforced Tungsten Plate during Transient Laser Thermal Shock. Metals 2022, 12, 686. [Google Scholar] [CrossRef]
- Pintsuk, G.; Antusch, S.; Weingaertner, T.; Wirtz, M. Recrystallization and composition dependent thermal fatigue response of different tungsten grades. Int. J. Refract. Met. Hard Mater. 2018, 72, 97–103. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Q.; Wang, W.; Wang, J.-C.; Wang, X.; Wei, R.; Xie, C.; Luo, G.; Hiral, T.; Escourbiac, F.; et al. Post examination of tungsten monoblocks subjected to high heat flux tests of ITER full-tungsten divertor qualification program. Fusion Eng. Des. 2017, 121, 60–69. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, Y.; He, G.; Zan, X.; Wang, K.; Zhu, D.; Luo, L.; Ding, R.; Wu, Y. Characterization of the Crack and Recrystallization of W/Cu Monoblocks of the Upper Divertor in EAST. Appl. Sci. 2023, 13, 745. https://doi.org/10.3390/app13020745
Xi Y, He G, Zan X, Wang K, Zhu D, Luo L, Ding R, Wu Y. Characterization of the Crack and Recrystallization of W/Cu Monoblocks of the Upper Divertor in EAST. Applied Sciences. 2023; 13(2):745. https://doi.org/10.3390/app13020745
Chicago/Turabian StyleXi, Ya, Gaoyong He, Xiang Zan, Kang Wang, Dahuan Zhu, Laima Luo, Rui Ding, and Yucheng Wu. 2023. "Characterization of the Crack and Recrystallization of W/Cu Monoblocks of the Upper Divertor in EAST" Applied Sciences 13, no. 2: 745. https://doi.org/10.3390/app13020745
APA StyleXi, Y., He, G., Zan, X., Wang, K., Zhu, D., Luo, L., Ding, R., & Wu, Y. (2023). Characterization of the Crack and Recrystallization of W/Cu Monoblocks of the Upper Divertor in EAST. Applied Sciences, 13(2), 745. https://doi.org/10.3390/app13020745