State of the Art of High-Flux Compton/Thomson X-rays Sources
Abstract
:1. Introduction
2. Generalities on Thomson/Compton Scattering
3. Discussion of Different Paradigms: Low Energy Sources Operating in Classical Regime
3.1. (i) Warm Linac + Single Shot Laser
3.2. (ii) Storage Ring + Laser in Cavity
3.3. (iii) Superconducting Linac + Laser in Cavity
4. Discussion of Different Paradigms: High Energy Sources Operating in Quantum Regime
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICS | Inverse Compton Scattering |
References
- Bartzsch, S.; Oelfke, U. Line focus X-ray tubes—A new concept to produce high brilliance X-rays. Phys. Med. Biol. 2017, 62, 8600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogorelski, I.V.; Ben-Zvi, I.; Hirose, T.; Kashiwagi, S. Demonstration of 8×1018 photons/second peaked at 1.8 A in a relativistic Thomson scattering experiment. Phys. Rev. Spec. Top.-Accel. Beams 2000, 3, 090702. [Google Scholar] [CrossRef] [Green Version]
- Brown, W.; Anderson, S.; Barty, C.; Betts, S.; Booth, R.; Crane, J. Experimental characterization of an ultrafast Thomson scattering X-ray source with three-dimensional time and frequency-domain analysis. Phys. Rev. Spec. Top.-Accel. Beams 2004, 7, 060702. [Google Scholar] [CrossRef]
- Albert, F.; Anderson, S.G.; Gibson, D.J.; Hagmann, C.A.; Johnson, M.S.; Messerly, M.; Semenov, V.; Shverdin, M.Y.; Rusnak, B.; Tremaine, A.M.; et al. Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering ray source. Phys. Rev. Spec. Top.-Accel. Beams 2010, 13, 070704. [Google Scholar] [CrossRef] [Green Version]
- Vaccarezza, C.; Alesini, D.; Anania, M.P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F. The SPARC_LAB Thomson source. Nucl. Instrum. Methods A 2016, 829, 237–242. [Google Scholar] [CrossRef]
- Kuroda, R.; Toyokawa, H.; Sei, N.; Yasumoto, M.; Ogawa, H.; Koike, M.; Yamada, K.; Nakajyo, T.; Sakai, F.; Yanagida, T. Injector study for compact hard X-ray source via Laser Compton scattering. Int. J. Mod. Phys. B 2007, 21, 488–496. [Google Scholar] [CrossRef]
- Du, Y.; Yan, L.; Hua, J.; Du, Q.; Zhang, Z.; Li, R.; Qian, H.; Huang, W.; Chen, H.; Tang, C. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source. Rev. Sci. Intrum. 2013, 84, 053301. [Google Scholar]
- Bech, M.; Bunk, O.; David, C.; Ruth, R. Hard X-ray phase-contrast imaging with the Compact Light Source on inverse Compton X-rays. J. Synchrotron Radiat. 2009, 16, 43. [Google Scholar] [CrossRef]
- Eggl, E.; Dierolf, M.; Achterhold, K.; Jud, C.; Guenther, B.; Braig, E.; Gleich, B.; Pfeiffer, F. The Munich Compact Light Source: Initial performance measures. J. Synchrotron Radiat. 2016, 23, 1137–1142. [Google Scholar] [CrossRef]
- Kraemer, J.M.; Jochmann, A.; Budde, M.; Bussmann, M.; Couperus, J.P.; Cowan, T.E. Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications. Sci. Rep. 2018, 8, 1398. [Google Scholar] [CrossRef] [Green Version]
- Powers, N.; Ghebregziabher, I.; Golovin, G. Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source. Nat. Photonics 2014, 8, 28–31. [Google Scholar] [CrossRef]
- Weller, H.R.; Ahmed, M.W.; Wu, Y.K. Nuclear Physics Research at the High Intensity Gamma-Ray Source (HIγS). Nucl. Phys. News 2015, 25, 19–24. [Google Scholar] [CrossRef]
- Jochmann, A.; Irman, A.; Bussmann, M.; Couperus, J.P.; Cowan, T.E.; Debus, A.D.; Kuntzsch, M.; Ledingham, K.W.D.; Lehnert, U.; Sauerbrey, R.; et al. High Resolution Energy-Angle Correlation Measurement of Hard X Rays from Laser-Thomson Backscattering. Phys. Rev. Lett. 2013, 111, 114803. [Google Scholar] [CrossRef] [PubMed]
- Babzien, M.; BenZvi, I.; Kusche, K.; Pavlishin, I.V.; Pogorelsky, I.V.; Siddons, D.P.; Yakimenko, V.; Cline, D.; Zhou, F.; Hirose, T.; et al. Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons. Phys. Rev. Lett. 2006, 96, 054802. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Pogorelsky, I.V.; Williams, O.; O’Shea, F.; Barber, S.; Gadjev, I.; Duris, J.; Musumeci, P.; Fedurin, M.; Korostyshevsky, A.; et al. Observation of redshifting and harmonic radiation in inverse Compton scattering. Phys. Rev. Spec. Top.-Accel. Beams 2015, 18, 060701. [Google Scholar] [CrossRef] [Green Version]
- Sakai, Y.; Gadjev, I.; Hoang, P.; Majernik, N.; Nause, A.; Fukasawa, A.; Williams, O.; Fedurin, M.; Malone, B.; Swinson, C.; et al. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear. regime. Phys. Rev. Accel. Beams 2017, 20, 060701. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Fruhling, C.; Golovin, G.; Haden, D.; Luo, J.; Zhang, P.; Zhao, B.; Zhang, J.; Liu, C.; Chen, M.; et al. High-order multiphoton Thomson scattering. Nat. Phot. 2017, 11, 514–520. [Google Scholar] [CrossRef]
- Williams, O.; Andonian, G.; Babzien, M.; Hemsing, E.; Kusche, K.; Park, J.; Pogorelsky, I.V.; Priebe, G.; Rosenzweig, J.; Yakimenko, V. Characterization results of the BNL ATF Compton X-ray source using K-edge absorbing foils. Nucl. Instrum. Methods A 2009, 608, S18–S22. [Google Scholar] [CrossRef]
- Hadena, D.; Golovin, G.; Yana, W.; Fruhling, C.; Zhang, P.; Zhao, B.; Banerjee, S.; Umstadter, D. High energy X-ray Compton spectroscopy via iterative reconstruction. Nucl. Instrum. Methods A 2020, 951, 163032. [Google Scholar] [CrossRef]
- Chi, Z.; Du, Y.; Huang, W.; Tang, C. Linearly polarized X-ray fluorescence computed tomography based on a Thomson scattering light source: A Monte Carlo study. J. Synchrotron Radiat. 2020, 27, 737–745. [Google Scholar] [CrossRef]
- Fruhling, C.; Wang, J.; Umstadter, D.; Schulzke, C.; Romero, M.; Ware, M.; Peatross, J. Experimental observation of polarization-resolved nonlinear Thomson scattering of elliptically polarized light. Phys. Rev. A 2021, 104, 053519. [Google Scholar] [CrossRef]
- Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Endrizzi, M.; Park, J.; Pogorelsky, I.V.; Yakimenko, V.; Williams, O.; Rosenzweig, J. Quantitative evaluation of single-shot inline phase contrast imaging using an inverse compton X-ray source. Appl. Phys. Lett. 2010, 97, 134104. [Google Scholar] [CrossRef]
- Kuroda, R.; Toyokawa, H.; Yasumoto, M.; Ikeura-Sekiguchi, H.; Koike, M.; Yamada, K.; Yanagida, T.; Nakajyo, T.; Sakai, F.; Mori, K. Quasi-monochromatic hard X-ray source via laser Compton scattering and its application. Nucl. Instrum. Methods A 2011, 637, S183–S186. [Google Scholar] [CrossRef]
- Achterhold, K.; Bech, M.; Schleede, S.; Potdevin, G.; Ruth, R.; Loewen, R.; Pfeiffer, F. Monochromatic computed tomography with a compact laser-driven X-ray source. Sci. Rep. 2013, 3, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggl, E.; Mechlem, K.; Braig, E.; Kulpe, S.; Dierolf, M.; Gunther, B.; Achterhold, K.; Herzen, J.; Gleich, B.; Rummeny, E.; et al. Mono-energy coronary angiography with a compact synchrotron source. Sci. Rep. 2017, 7, 42211. [Google Scholar] [CrossRef] [Green Version]
- Amano, S.; Horikawa, K.; Ishihara, K.; Miyamoto, S.; Hayakawa, T.; Shizuma, T.; Mochizuki, T. Several-MeV γ-ray generation at NewSUBARU by laser Compton backscattering. Nucl. Instrum. Methods A 2009, 602, 337–341. [Google Scholar] [CrossRef]
- Adriani, O.; Albergo, S.; Alesini, D.; Anania, M.; Angal-Kalinin, D.; Antici, P.; Bacci, A.; Bedogni, R.; Bellaveglia, M.; Biscari, C.; et al. EuroGammaS: Technical Design Report for the ELI_np Gamma beam System. arXiv 2014, arXiv:1407.3669. [Google Scholar]
- Dupraz, K.; Alkadi, M.; Alves, M.; Amoudry, L.; Auguste, D.; Babigeon, J.-L.; Baltazar, M.; Benoit, A.; Bonis, J.; Bonenfant, J.; et al. The ThomX ICS source. Phys. Open 2020, 5, 100051. [Google Scholar] [CrossRef]
- Deitrick, K.; Hoffstaetter, G.H.; Franck, C.; Muratori, B.D.; Williams, P.H.; Krafft, G.A.; Terzić, B.; Crone, J.; Owen, H. Intense monochromatic photons above 100 keV from an inverse Compton source. Phys. Rev. Accel. Beams 2021, 24, 050701. [Google Scholar] [CrossRef]
- Zen, H.; Taira, Y.; Konomi, T.; Hayakawa, T.; Shizuma, T.; Yamazaki, J.; Kii, T.; Toyokawa, H.; Katoh, M.; Ohgaki, H. Generation of High Energy Gamma-ray by Laser Compton Scattering of 1.94-Pm Fiber Laser in UVSOR-III Electron Storage Ring. Energy Procedia 2016, 89, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Nagai, R.; Hajima, R.; Mori, M.; Shizuma, T.; Akagi, T.; Araki, S.; Honda, Y.; Kosuge, A.; Terunuma, N.; Urakawa, J. Demonstration of High-flux photon generation from an ERL-based laser Compton photon source. In Proceedings of the 6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA, 3–8 May 2015; ISBN 978-3-95450-168-7. [Google Scholar] [CrossRef]
- Graves, W.S.; Bessuille, J.; Brown, P.; Carbajo, S.; Dolgashev, V.; Hong, K.-H.; Ihloff, E.; Khaykovich, B.; Lin, H.; Murari, K.; et al. Compact X-ray source based on burst-mode inverse Compton scattering at 100 kHz. Phys. Rev. Spec. Top.-Accel. Beams 2014, 17, 120701. [Google Scholar] [CrossRef]
- Ainsworth, R.; Burt, G.; Konoplev, I.V.; Seryi, A. Asymmetric dual axis energy recovery linac for ultrahigh flux sources of coherent X-ray and THz radiation: Investigations towards its ultimate performance. Phys. Rev. Spec. Top.-Accel. Beams 2016, 19, 083502. [Google Scholar] [CrossRef] [Green Version]
- bERLinPro Conceptual Design Report. Available online: https://www.helmholtz-berlin.de/media/media/forschung/be/beschleuniger-ia/berlinpro_MAB/BPro_in_detail/Publications/bERLinPro_CDR.pdf (accessed on 17 December 2022).
- Faillace, L.; Agostino, R.G.; Bacci, A.; Barberi, R.; Bosotti, A.; Broggi, F.; Cardarelli, P.; Cialdi, S.; Drebot, I.; Formoso, V.; et al. Status of compact inverse Compton sources in Italy: BriXS and STAR SPIE Optical Engineering + Applications, 2019, San Diego, California, United States. Proc. Adv. Lab.-Based X-ray Sources Opt. Appl. VII 2019, 11110, 1111005. [Google Scholar] [CrossRef]
- Bacci, A.; Faillace, L.; Pellegrino, L.; Alesini, D.; Bini, S.; Cardelli, F.; Catuscelli, G.; Chiarelli, F.; Drebot, I.; Esposito, A.; et al. STAR HE-Linac Complete Detailed Design Report physics. arXiv 2021, arXiv:2109.10351. [Google Scholar]
- Cardarelli, P.; Bacci, A.; Calandrino, R.; Canella, F.; Castriconi, R.; Cialdi, S.; Del Vecchio, A.; di Franco, F.; Drebot, I.; Gambaccini, M.; et al. BriXS, a new X-ray inverse Compton source for medical applications. Phys. Medica 2020, 77, 127–137. [Google Scholar] [CrossRef]
- BriXSinO Conceptual Design Report. 2021. Available online: https://marix.mi.infn.it/brixsino-docs/ (accessed on 10 May 2022).
- Ghebregziabher, I.; Shadwick, B.A.; Umstadter, D. Spectral bandwidth reduction of Thomson scattered light by pulse chirping. Phys. Rev. Spec. Top.-Accel. Beams 2013, 16, 030705. [Google Scholar] [CrossRef] [Green Version]
- Terzić, B.; Deitrick, K.; Hofler, A.; Krafft, G.A. Narrow-band emission in Thomson sources operating in the high-field regime. Phys. Rev. Lett. 2014, 112, 074801. [Google Scholar] [CrossRef] [Green Version]
- Terzić, B.; Reeves, C.; Krafft, G.A. Combining harmonic generation and laser chirping to achieve high spectral density in Compton sources. Phys. Rev. Spec. Top.-Accel. Beams 2016, 19, 044403. [Google Scholar] [CrossRef] [Green Version]
- Rykovanov, S.G.; Geddes, C.G.R.; Schroeder, C.B.; Esarey, E.; Leemans, W.P. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping. Phys. Rev. Spec. Top.-Accel. Beams 2016, 19, 030701. [Google Scholar] [CrossRef] [Green Version]
- Maroli, C.; Petrillo, V.; Drebot, I.; Serafini, L.; Terzić, B.; Krafft, G.A. Compensation of non-linear bandwidth broadening by laser chirping in Thomson sources. J. Appl. Phys. 2018, 124, 063105. [Google Scholar] [CrossRef] [Green Version]
- Terzić, B.; Krafft, G.; Brown, A.; Drebot, I.; Hagerman, T.; Johnson, E.; Krafft, G.A.; Maroli, C.; Petrillo, V.; Ruijter, M. Improving performance of inverse Compton sources through laser chirping. Europhys. Lett. 2019, 126, 12003. [Google Scholar] [CrossRef] [Green Version]
- Seipt, D.; Kharin, V.Y.; Rykovanov, S.G. Optimizing Laser Pulses for Narrow-Band Inverse Compton Sources in the High-Intensity Regime. Phys. Rev. Lett. 2019, 122, 204802. [Google Scholar] [CrossRef] [PubMed]
- Ruijter, M.; Petrillo, V.; Zepf, M. Decreasing the bandwidth of linear and nonlinear Thomson scattering radiation for electron bunches with a finite energy spread. Phys. Rev. Accel. Beams 2021, 24, 020702. [Google Scholar] [CrossRef]
- Petrillo, V.; Drebot, I.; Krafft, G.; Maroli, C.; Rossi, A.R.; Rossetti Conti, M.; Ruijter, M.; Terzić, B. A laser frequency transverse modulation might compensate for the spectral broadening due to large electron energy spread in Thomson sources. Photonics 2022, 9, 62. [Google Scholar] [CrossRef]
- Mackenroth, F.; Di Piazza, A.; Keitel, C.H. Determining the carrier-envelope phase of intense few-cycle laser pulses. Phys. Rev. Lett. 2010, 105, 063903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruijter, M.; Petrillo, V.; Teter, T.C.; Valialshchikov, M.; Rykovanov, S. Signatures of the Carrier Envelope Phase in Nonlinear Thomson Scattering. Crystals 2021, 11, 528. [Google Scholar] [CrossRef]
- Schaap, B.H.; de Vos, T.D.C.; Smorenburg, P.W.; Luiten, O.J. Photon yield of superradiant inverse Compton scattering from microbunched electrons. New J. Phys. 2022, 24, 033040. [Google Scholar] [CrossRef]
- Klein, R.; Kuske, P.; Thornagel, R.; Brandt, G.; Gorgen, R.; Ulm, G. Measurement of the BESSY II electron beam energy by Compton-backscattering of laser photons. Nucl. Inst. Methods A 2002, 486, 545–551. [Google Scholar] [CrossRef]
- Fruhling, C.; Golovin, G.; Umstadter, D. Attosecond electron bunch measurement with coherent nonlinear Thomson scattering. Phys. Rev. Accel. Beams 2020, 23, 072802. [Google Scholar] [CrossRef]
- Androsov, V.; Agafonov, A.; Bulyak, E.; Botman, J.I.M.; Grevtsev, V.; Gvozd, A.; Gladkikh, P.; Grigor’ev, Y.; Dovbnya, A.; Drebot, I.; et al. Kharkov X ray gemerator NESTOR. In Brilliant Light in Life and Material Sciences; NATO Security through Science Series; Tsakanov, V., Wiedemann, H., Eds.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Miura, E.; Ishii, S.; Tanaka, K.; Kuroda, R.; Toyokawa, H. X-ray pulse generation by laser Compton 515 scattering using a high-charge, laser-accelerated, quasi-monoenergetic electron beam. Appl. Phys. Express 2014, 7, 046701. [Google Scholar] [CrossRef]
- Akagi, T.; Kosuge, A.; Araki, S.; Hajima, R.; Honda, Y.; Miyajima, T.; Mori, M.; Nagai, R.; Nakamura, N.; Shimada, M.; et al. Narrow-band photon beam via laser Compton scattering in an energy recovery linac. Phys. Rev. Spec. Top.-Accel. Beams 2016, 19, 114701. [Google Scholar] [CrossRef]
- Petrillo, V.; Bacci, A.; Drebot, I.; Opromolla, M.; Rossi, A.R.; Rossetti Conti, M.; Ruijter, M.; Samsam, S.; Serafini, L. Synchronised TeraHertz Radiation and Soft X-rays Produced in a FEL Oscillator. Appl. Sci. 2022, 12, 8341. [Google Scholar] [CrossRef]
- Bacci, M.; Ferrario, C.; Maroli, V.; Petrillo, L. Serafini Transverse effects in the production of x rays with a free-electron laser based on an optical undulator. Phys. Rev. Spec. Top.-Accel. Beams 2006, 9, 060704. [Google Scholar] [CrossRef] [Green Version]
- Debus, A.D.; Bussmann, M.; Siebold, M.; Jochmann, A.; Schramm, U.; Cowan, T.E.; Sauerbrey, R. Traveling-wave Thomson scattering and optical undulators for high-yield EUV and X-ray sources. Appl. Phys. Lasers Opt. 2010, 100, 61–76. [Google Scholar] [CrossRef]
- Drebot, I.; Petrillo, V.; Serafini, L. Two-colour X-gamma ray inverse Compton back-scattering source. EPL 2017, 120, 14002. [Google Scholar] [CrossRef] [Green Version]
- Suerra, E.; Giannotti, D.; Canella, F.; Drebot, I.; Capra, S.; Cipriani, D.; Mettivier, D.; Galzerano, G.; Cardarelli, P.; Cialdi, S.; et al. A new method for spatial mode shifting of stabilized optical cavities for the generation of dual-color X-rays. Nucl. Instrum. Methods A 2021, 1019, 165852. [Google Scholar] [CrossRef]
- Ranjan, N.; Terzić, B.; Krafft, G.A.; Petrillo, V.; Drebot, I.; Serafini, L. Simulation of inverse Compton scattering and its implications on the scattered linewidth. Phys. Rev. Accel. Beams 2018, 21, 030701. [Google Scholar] [CrossRef] [Green Version]
- Curatolo, C.; Drebot, I.; Petrillo, V.; Serafini, L. Analytical description of photon beam phase spaces in inverse Compton scattering sources. Phys. Rev. Accel. Beams 2017, 20, 080701. [Google Scholar] [CrossRef] [Green Version]
- Petrillo, V.; Bacci, A.; Curatolo, C.; Drebot, I.; Giribono, A.; Maroli, C.; Rossi, A.R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; et al. Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering. Phys. Rev. Spec. Top.-Accel. Beams 2015, 18, 110701. [Google Scholar] [CrossRef]
- Tomassini, P.; Bacci, A.; Cary, J.; Ferrario, M.; Giulietti, A.; Giulietti, D.; Gizzi, L.A.; Labate, L.; Serafini, L.; Petrillo, V.; et al. Linear and nonlinear Thomson scattering for advanced X-ray sources in PLASMONX. IEEE Trans. Plasma Sci. 2008, 36, 1782–1789. [Google Scholar] [CrossRef]
- Boca, M.; Florescu, V. Thomson and Compton scattering with an intense laser pulse. Eur. Phys. J. D 2011, 61, 449. [Google Scholar] [CrossRef]
- Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L. Nonlinear effects in Thomson backscattering. Phys. Rev. Spec. Top.-Accel. Beams 2013, 16, 030706. [Google Scholar] [CrossRef]
- Chen, S.; Maksimchuk, A.; Umstadter, D. Experimental observation of relativistic nonlinear Thomson scattering. Nature 1998, 396, 653–655. [Google Scholar] [CrossRef] [Green Version]
- Petrillo, V.; Dattoli, G.; Drebot, I.; Nguyen, F. Compton Scattered X-Gamma Rays with Orbital Momentum. Phys. Rev. Lett. 2016, 117, 123903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupraz, K.; Cassou, K.; Delerue, N.; Fichot, P.; Martens, A.; Stocchi, A.; Variola, A.; Zomer, F.; Courjaud, A.; Mottay, E.; et al. Design and optimization of a highly efficient optical multipass system for γ -ray beam production from electron laser beam Compton scattering. Phys. Rev. Spec. Top.-Accel. Beams 2014, 17, 033501. [Google Scholar] [CrossRef] [Green Version]
- Ovodenko, A.; Agustsson, R.; Babzien, M.; Campese, T.; Fedurin, M.; Murokh, A.; Pogorelsky, I.; Polyanskiy, M.; Rosenzweig, J.; Sakai, Y.; et al. High duty cycle inverse Compton scattering X-ray source. Appl. Phys. Lett. 2016, 109, 253504. [Google Scholar] [CrossRef]
- Chi, Z.; Yan, L.; Zhang, Z.; Zhou, Z.; Zheng, L.; Wang, D.; Tian, Q.; Wang, W.; Nie, Z.; Zhang, J.; et al. Diffraction based method to reconstruct the spectrum of the Thomson scattering X-ray source. Rev. Sci. Instrum. 2017, 88, 045110. [Google Scholar] [CrossRef]
- Golosio, B.; Endrizzi, M.; Oliva, P.; Delogu, P.; Carpinelli, M.; Pogorelski, I.; Yakimenko, V. Measurement of an inverse Compton scattering source local spectrum using k-edge filters. Appl. Phys. Lett. 2012, 100, 164104. [Google Scholar] [CrossRef]
- Hongze, Z. Experiments on Polarization Control of Thomson Scattering X/γ-ray Source. In Proceedings of the 13th Symposium on Accelerator Physics SAP 2017, Jishou, China, 28–30 August 2017; ISBN 978-3-95450-199-1. [Google Scholar] [CrossRef]
- Feng, B.; Qin, C.Y.; Geng, X.S.; Yu, Q.; Wang, W.Q.; Wu, Y.T.; Yan, X.; Ji, L.L.; Shen, B.F. The emission of γ-Ray beams with orbital angular momentum in laser-driven micro-channel plasma target. Sci. Rep. 2019, 9, 18780. [Google Scholar] [CrossRef] [Green Version]
- Fujii, T.; Fukuyama, N.; Tanaka, C.; Ikeya, Y.; Shinozaki, Y.; Kawai, T.; Atsumi, T.; Shiraishi, T.; Sato, E.; Kuroda, R.; et al. Visualization of microvessels by angiography using inverse-Compton scattering X-rays in animal models. J. Synchrotron Radiat. 2014, 21, 1327–1332. [Google Scholar] [CrossRef]
- Ikeura-Sekiguchi, H.; Kuroda, R.; Yasumoto, M.; Toyokawa, H.; Koike, M.; Yamada, K.; Sakai, F.; Mori, K.; Maruyama, K.; Oka, H.; et al. In-line phase-contrast imaging of a biological specimen using a compact laser-Compton scattering-based X-ray source. Appl. Phys. Lett. 2008, 92, 131107. [Google Scholar] [CrossRef]
- Schleede, S.; Meinel, F.G.; Bech, M.; Herzen, J.; Achterhold, K.; Potdevin, G.; Malecki, A.; Adam-Neumair, S.; Thieme, S.F.; Bamberg, F.; et al. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source. Proc. Natl. Acad. Sci. USA 2012, 109, 17880–17885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meinel, F.G.; Schwab, F.; Schleede, S.; Bech, M.; Herzen, J.; Achterhold, K.; Auweter, S.; Bamberg, F.; Yildirim, A.O.; Bohla, A.; et al. Diagnosing and mapping pulmonary emphysema on X-ray projection images: Incremental value of grating-based X-ray dark-field imaging. PLoS ONE 2013, 8, 59526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abendroth, J.; McCormick, M.S.; Edwards, T.E.; Staker, B.; Loewen, R.; Gifford, M.; Rifkin, J.; Mayer, C.; Guo, W.; Zhang, Y.; et al. X-ray structure determination of the glycine cleavage system protein H of Mycobacterium tuberculosis using an inverse Compton synchrotron X-ray source. J. Struct. Funct. Genom. 2010, 11, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Loewen, R.; Ruth, R.D.; Pfeiffer, F. X-ray phase-contrast tomography with a compact laser-driven synchrotron source. Proc. Natl. Acad. Sci. USA 2015, 112, 5567–5572. [Google Scholar] [CrossRef] [Green Version]
- Gromann, L.B.; De Marco, F.; Willer, K.; Noël, P.B.; Scherer, K.; Renger, B.; Gleich, B.; Achterhold, K.; Fingerle, A.A.; Muenzel, D.; et al. In-vivo X-ray Dark-Field Chest Radiography of a Pig. Sci. Rep. 2017, 7, 4807. [Google Scholar] [CrossRef] [Green Version]
- Gradl, R.; Dierolf, M.; Yang, L.; Hehn, L.; Günther, B.; Möllerd, W.; Kutschked, D.; Stoeger, T.; Gleich, B.; Achterhold, K.; et al. Visualizing treatment delivery and deposition in mouse lungs using in vivo X-ray imaging. J. Control. Release 2019, 307, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Willer, K.; Fingerle, A.A.; Gromann, L.B.; De Marco, F.; Herzen, J.; Achterhold, K.; Gleich, B.; Muenzel, D.; Scherer, K.; Renz, M.; et al. X-ray dark-field imaging of the human lung—A Feasibility study on a deceased body. PLoS ONE 2019, 13, 0204565. [Google Scholar] [CrossRef]
- Huang, J.; Günther, B.; Achterhold, K.; Cui, Y.; Gleich, B.; Dierolf, M.; Pfeiffer, F. Energy-Dispersive X-ray Absorption Spectroscopy with an Inverse Compton Source. Sci. Rep. 2020, 10, 8772. [Google Scholar] [CrossRef]
- Kulpe, S.; Dierolf, M.; Braig, E.-M.; Guenther, B.; Achterhold, K.; Gleich, B.; Herzen, J.; Rummeny, E.; Pfeiffer, F.; Pfeiffer, D. K-edge subtraction imaging for iodine and calcium separation at a compact synchrotron X-ray source. J. Med. Imaging 2020, 7, 023504. [Google Scholar] [CrossRef]
- Dombrowsky, A.C.; Burger, K.; Porth, A.-K.; Stein, M.; Dierolf, M.; Günther, B.; Achterhold, K.; Gleich, B.; Feuchtinger, A.; Bartzsch, S.; et al. A proof of principle experiment for microbeam radiation therapy at the Munich compact light source. Radiat. Environ. Biophys. 2020, 59, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Tigner, M. A Possible Apparatus for Electron Clashing-Beam Experiments. Nuovo Cim. 1965, 37, 1228–1231. [Google Scholar] [CrossRef]
- Sannibale, F.; Filippetto, D.; Qian, H.; Mitchell, C.E.; Feng, J.; Harris, G.; Johnson, M.J.; Kramasz, T.D.; Leitner, D.; Nasiatka, J.R.; et al. APEX phase-II commissioning results at the Lawrence Berkeley National Laboratory. In Proceedings of the 7th International Particle Accelerator Conference, IPAC 2016, Busan, Republic of Korea, 8–13 May 2016; pp. 1041–1043. [Google Scholar]
- Kayran, D. Status and Commissioning Results of the R and D ERL at BNL; Tech. Rep.; Brookhaven National Laboratory (BNL): Upton, NY, USA, 2015. [Google Scholar]
- Toyokawa, H.; Ohgaki, H.; Hayakawa, T.; Kii, T.; Shizuma, T.; Hajima, R.; Kikuzawa, N.; Masuda, K.; Kitatani, F.; Harada, H. Two-Dimensional Isotope Imaging of Radiation Shielded Materials Using Nuclear Resonance Fluorescence. Jpn. J. Appl. Phys. 2011, 50, 100209. [Google Scholar] [CrossRef]
- Kulikov, O.F.; Telnov, Y.Y.; Filippov, E.I.; Yakimenko, M.N. Compton effect on moving electrons. Phys. Lett. 1964, 13, 344–346. [Google Scholar] [CrossRef]
- Kawase, K.; Arimoto, Y.; Fujiwara, M.; Okajima, S.; Shoji, M.; Suzuki, S.; Tamura, K.; Yorita, T.; Ohkuma, H. MeV γ-ray generation from backward Compton scattering at SPring-8. Nucl. Instrum. Meth. A 2008, 592, 154. [Google Scholar] [CrossRef]
- Litvinenko, V.N.; Madey, J.M.J. Intense Compton y-ray source from the Duke storage ring FEL. Nucl. Inst. Methods A 1996, 375, 580–583. [Google Scholar] [CrossRef]
- Aoki, K.; Hosono, K.; Hadame, T.; Munenaga, H.; Kinoshita, K.; Toda, M.; Amano, S.; Miyamoto, S.; Mochizuki, T.; Aoki, M.; et al. High-energy photon beam production with laser-Compton backscattering. Nucl. Inst. Methods A 2004, 516, 228–236. [Google Scholar] [CrossRef]
- Horikawa, K.; Miyamoto, S.; Amano, S.; Mochizuki, T. Measurements for the energy and flux of Compton scattering γ-ray photons generated in an electron storage ring: New SUBARU. Nucl. Inst. Methods A 2010, 618, 209–215. [Google Scholar] [CrossRef]
- Muramatsu, N.; Kon, Y.; Daté, S.; Ohashi, Y.; Akimune, H.; Chen, J.Y.; Fujiwara, M.; Hasegawa, S.; Hotta, T.; Ishikawa, T.; et al. Development of high intensity laser-electron photon beams up to 2.9 GeV at the spring-8 LEPS beamline. Nucl. Inst. Methods A 2014, 737, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, N.; Yosoi, M.; Yorita, T.; Ohashi, Y.; Ahn, J.K.; Ajimura, S.; Asano, Y.; Chang, W.C.; Chen, J.Y.; Daté, S. SPring-8 LEPS2 beamline: A facility to produce a multi-GeV photon beam via laser Compton scattering. Nucl. Inst. Methods A 2022, 1033, 166677. [Google Scholar] [CrossRef]
- Nutarelli, D.; Couprie, M.E.; Nahon, L.; Bakker, R.; Delboulbe, A.; Roux, R.; Visentin, B.; Billardon, M. Gamma rays production by intra-cavity Compton Back Scattering with Super-ACO Storage Ring Free Electron Laser. Nucl. Inst. Methods A 1998, 407, 459–463. [Google Scholar] [CrossRef]
- Hosaka, M.; Hama, H.; Kimura, K.; Yamazaki, J.; Kinoshita, T. Observation of intracavity Compton backscattering of the UVSOR free electron laser. Nucl. Inst. Methods A 1997, 393, 525–529. [Google Scholar] [CrossRef]
- Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S. Generation of laser Compton gamma-rays in SAGA light source. Nucl. Inst. Methods A 2011, 659, 30–35. [Google Scholar] [CrossRef]
- Litvinenko, V.N.; Burnham, B.; Emamian, M.; Hower, N.; Madey, J.M.J.; Morcombe, P.; O’Shea, P.G.; Park, S.H.; Sachtschale, R.; Straub, K.D.; et al. Gamma-Ray Production in a Storage Ring Free-Electron Laser. Phys. Rev. Lett. 1997, 78, 4569. [Google Scholar] [CrossRef]
- VEGA Project. Available online: https://www.innovationnewsnetwork.com/eli-np-revealing-intimate-structure-matter-extreme-light/18383/ (accessed on 27 December 2022).
- Chen, S.; Powers, N.D.; Ghebregziabher, I.; Maharjan, C.M.; Liu, C.; Golovin, G.; Banerjee, S.; Zhang, J.; Cunningham, N.; Moorti, A.; et al. MeV-energy X rays from inverse compton scattering with laser-wakefield accelerated electrons. Phys. Rev. Lett. 2013, 110, 155003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Golovin, G.; Chen, S.; Liu, C.; Golovin, G.; Chen, S.; Zhang, J.; Zhao, B.; Haden, D.; Banerjee, S.; et al. Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light. Opt. Lett. 2014, 39, 4132–4135. [Google Scholar] [CrossRef]
ICS | Electron Energy (MeV) | (m) | Laser Energy (J) | X Energy (keV) | X Flux | Bandwidth | Rep. Rate (Hz) |
---|---|---|---|---|---|---|---|
BNL [2] | 64–72 | 10 | 2 | 7–8.9 | 2·10 | <5% | <10 |
T-ReX [4] | 116 | 0.532 | 0.15 | 0.1–0.9 | 10 | 15% | 10 |
Sparc [5] | 30 | 0.8 | 5 | 13 | 1.4·10 | 20% | 10 |
AIST [6] | 42 | 0.8 | 0.14 | 40 | 10 | 4–10% | 10 |
TTX [7] | 46.7 | 0.8 | 0.3 | 51.7 | 10 | 10% | 100 |
Elbe [10] | 23 | 0.8 | 2.25 | 13–25 | 25% | 10 | |
STAR-II-HE [35] | 140 | 1.03 | 0.5 | 350 | 10 | 6% | 100 |
ICS | Electron Energy (MeV) | (m) | Laser Energy (mJ) | X Energy (keV) | X Flux | Bandwidth | Rep. Rate (Hz) |
---|---|---|---|---|---|---|---|
CLS [8] | 25–45 | 1 | 5 | 8–42 | 5·10–5·10 | 3% | 65·10 |
MUCLS [9] | 25–45 | 1 | 5 | 8–42 | 5·10–5·10 | 3–5% | 65·10 |
ThomX [28] | 50 | 1.03 | 1.4–2.6·10 | 45 | 10 | 65·10 |
ICS | Electron Energy (MeV) | (m) | Laser Energy (mJ) | X Energy (keV) | X/Shot | Bandwidth | Rep. Rate (Hz) | X/s |
---|---|---|---|---|---|---|---|---|
UH-FLUX [33] | 20 | 1 | 15 | 2·10 | 0.1% | 1.3·10 | 2·10 | |
CBETA [29] | 42–150 | 1.06 | 6.2·10 | 32–402 | 2·10 | >10% | 1.62·10 | 3·10 |
bERLinPro [34] | 30 | 0.8 | 20 | |||||
CXLS [32] | 8–40 | 0.515 | 50 | 12.4 | 5·10 | 5% | 10 | 5·10 |
KEK [31] | 20 | 1.064 | 0.064 | 6.96 | 3.01·10 | 3% | 1.62·10 | 5·10 |
BriXS [37] | 30–100 | 1.03 | 7.5 | 20–180 | 0.05–1·10 | 0.1–1% | 10 | 0.05–1·10 |
BriXSinO [38] | <80 | 1.03 | 2.7 | 30–35 | 1–10·10 | 2–10% | 10 | 0.1–1·10 |
ICS | Electron Energy (GeV) | (m) | Recoil | X Energy (MeV) | X/s | Rep Rate (Hz) | Bandwidth |
---|---|---|---|---|---|---|---|
UVSOR-III [30] | 0.75 | 1.9–10.6 | <7.5·10 | 1–5.4 | 10 | 9·10 | 2.9% |
New SUBARU [95] | 0.5–1.5 | 1.06/0.532–10.5 | <5.2·10 | 1–37 | 1–4·10 | 5·10 | 1.6% |
LEPS/Leps2 [96] | 8 | 0.26–0.35 | 0.6 | 1.3–2.9·10 | 10–10 | 5–50·10 | |
HIGs [12] | 0.24–1 | 0.19–1.06 | <0.1 | 1–100 | 10–3·10 | 5.6·10 | 1.5–3.5% |
Euro-Gammas [27] | 0.7 | 0.51 | 2.7·10 | 0.2–19.5 | 5·10 | 100·36 | 0.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrillo, V.; Drebot, I.; Ruijter, M.; Samsam, S.; Bacci, A.; Curatolo, C.; Opromolla, M.; Conti, M.R.; Rossi, A.R.; Serafini, L. State of the Art of High-Flux Compton/Thomson X-rays Sources. Appl. Sci. 2023, 13, 752. https://doi.org/10.3390/app13020752
Petrillo V, Drebot I, Ruijter M, Samsam S, Bacci A, Curatolo C, Opromolla M, Conti MR, Rossi AR, Serafini L. State of the Art of High-Flux Compton/Thomson X-rays Sources. Applied Sciences. 2023; 13(2):752. https://doi.org/10.3390/app13020752
Chicago/Turabian StylePetrillo, Vittoria, Illya Drebot, Marcel Ruijter, Sanae Samsam, Alberto Bacci, Camilla Curatolo, Michele Opromolla, Marcello Rossetti Conti, Andrea Renato Rossi, and Luca Serafini. 2023. "State of the Art of High-Flux Compton/Thomson X-rays Sources" Applied Sciences 13, no. 2: 752. https://doi.org/10.3390/app13020752
APA StylePetrillo, V., Drebot, I., Ruijter, M., Samsam, S., Bacci, A., Curatolo, C., Opromolla, M., Conti, M. R., Rossi, A. R., & Serafini, L. (2023). State of the Art of High-Flux Compton/Thomson X-rays Sources. Applied Sciences, 13(2), 752. https://doi.org/10.3390/app13020752