Face Mask Detection on Photo and Real-Time Video Images Using Caffe-MobileNetV2 Transfer Learning
Abstract
:1. Introduction
- i.
- To train and test the CMNV2 model for detecting face masks in the photo image dataset and real-time video images.
- ii.
- A transfer learning method was used by adding five of our own layers in the MobileNetV2 model and developeing a modified architecture (CMNV2) as the proposed model.
- iii.
- Additionally, a modified MobileNetV2 model was used for various image dimensions, including 224 × 224, 192 × 192, 160 × 160, and 128 × 128 to measure the performance of the proposed model with different image dimensions.
- iv.
- To select the best model, the modified MobileNetV2 model with different image dimensions was compared to the existing MobileNetV1 model with different image dimensions along with the Caffe model.
2. Related Work
3. MobileNetV2
3.1. Depthwise Separable Convolution
3.2. Inverted Residual Blocks
3.3. Linear Bottlenecks
4. Materials and Methods
4.1. Data Preprocessing
4.2. Model Training
4.3. CMNV2 Model
4.4. Model Testing
5. Performance Discussion of the Proposed CMNV2 Model
5.1. Accuracy
5.2. Precision
5.3. Recall
5.4. F1-Score
5.5. Error Rate
6. Results Visualization
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection. Sustain. Cities Soc. 2021, 65, 102600. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ding, H.; Li, B.; Yang, Z.; Yang, J. Mask wearing detection algorithm based on improved YOLOv3 in complex scenes. Comput. Eng. 2020, 46, 12–22. [Google Scholar]
- Niu, Z.; Qin, T.; Li, H.; Chen, J. Improved algorithm of RetinaFace for natural scene mask wear detection. Comput. Eng. Appl. 2020, 56, 1–7. [Google Scholar]
- Bing, W.; Hongxia, L.; Wenjing, L.; Menghan, Z. Mask detection algorithm based on improved YOLO lightweight network. Comput. Eng. Appl. 2021, 57, 62–69. [Google Scholar]
- Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 2022, 1–33. [Google Scholar] [CrossRef]
- Jignesh Chowdary, G.; Punn, N.S.; Sonbhadra, S.K.; Agarwal, S. Face mask detection using transfer learning of inceptionv3. In Proceedings of the International Conference on Big Data Analytics, Sonipat, India, 15–18 December 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 81–90. [Google Scholar]
- Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement 2021, 167, 108288. [Google Scholar] [CrossRef]
- Mercaldo, F.; Santone, A. Transfer learning for mobile real-time face mask detection and localization. J. Am. Med. Inform. Assoc. 2021, 28, 1548–1554. [Google Scholar] [CrossRef]
- Bu, W.; Xiao, J.; Zhou, C.; Yang, M.; Peng, C. A cascade framework for masked face detection. In Proceedings of the 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo, China, 19–21 November 2017; IEEE: Piscatway, NJ, USA, 2017; pp. 458–462. [Google Scholar]
- Jiang, M.; Fan, X.; Yan, H. Retinamask: A face mask detector. arXiv 2020, arXiv:2005.03950. [Google Scholar]
- Chen, Y.; Hu, M.; Hua, C.; Zhai, G.; Zhang, J.; Li, Q.; Yang, S.X. Face mask assistant: Detection of face mask service stage based on mobile phone. IEEE Sensors J. 2021, 21, 11084–11093. [Google Scholar] [CrossRef]
- Eyiokur, F.I.; Ekenel, H.K.; Waibel, A. A computer vision system to help prevent the transmission of COVID-19. arXiv 2021, arXiv:2103.08773. [Google Scholar]
- Christa, G.H.; Jesica, J.; Anisha, K.; Sagayam, K.M. CNN-based mask detection system using openCV and MobileNetV2. In Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICSPC), Coimbatore, India, 13–14 May 2021; IEEE: Piscatway, NJ, USA, 2021; pp. 115–119. [Google Scholar]
- Vinh, T.Q.; Anh, N.T.N. Real-time face mask detector using YOLOv3 algorithm and Haar cascade classifier. In Proceedings of the 2020 International Conference on Advanced Computing and Applications (ACOMP), Quy Nhon, Vietnam, 25–27 November 2020; IEEE: Piscatway, NJ, USA, 2020; pp. 146–149. [Google Scholar]
- Chandra, Y.B.; Reddy, G.K. A comparative analysis of face recognition models on masked faces. Int. J. Sci. Technol. Res. 2020, 9, 175–178. [Google Scholar]
- Zhang, E. A Real-Time Deep Transfer Learning Model for Facial Mask Detection. In Proceedings of the 2021 Integrated Communications Navigation and Surveillance Conference (ICNS), Virtual, 20–22 April 2021; IEEE: Piscatway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Militante, S.V.; Dionisio, N.V. Real-time facemask recognition with alarm system using deep learning. In Proceedings of the 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 8 August 2020; IEEE: Piscatway, NJ, USA, 2020; pp. 106–110. [Google Scholar]
- Mandal, B.; Okeukwu, A.; Theis, Y. Masked face recognition using resnet-50. arXiv 2021, arXiv:2104.08997. [Google Scholar]
- Hariri, W. Efficient masked face recognition method during the covid-19 pandemic. Signal Image Video Process. 2022, 16, 605–612. [Google Scholar] [CrossRef]
- Koklu, M.; Cinar, I.; Taspinar, Y.S. CNN-based bi-directional and directional long-short term memory network for determination of face mask. Biomed. Signal Process. Control 2022, 71, 103216. [Google Scholar] [CrossRef]
- Din, N.U.; Javed, K.; Bae, S.; Yi, J. A novel GAN-based network for unmasking of masked face. IEEE Access 2020, 8, 44276–44287. [Google Scholar] [CrossRef]
- Maharani, D.A.; Machbub, C.; Rusmin, P.H.; Yulianti, L. Improving the capability of real-time face masked recognition using cosine distance. In Proceedings of the 2020 6th International Conference on Interactive Digital Media (ICIDM), Virtual, 14–15 December 2020; IEEE: Piscatway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Boutros, F.; Damer, N.; Kirchbuchner, F.; Kuijper, A. Unmasking face embeddings by self-restrained triplet loss for accurate masked face recognition. arXiv 2021, arXiv:2103.01716. [Google Scholar]
- Deng, H.; Feng, Z.; Qian, G.; Lv, X.; Li, H.; Li, G. MFCosface: A masked-face recognition algorithm based on large margin cosine loss. Appl. Sci. 2021, 11, 7310. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Du, H.; Shi, H.; Liu, Y.; Zeng, D.; Mei, T. Towards NIR-VIS masked face recognition. IEEE Signal Process. Lett. 2021, 28, 768–772. [Google Scholar] [CrossRef]
- Geng, M.; Peng, P.; Huang, Y.; Tian, Y. Masked face recognition with generative data augmentation and domain constrained ranking. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 2246–2254. [Google Scholar]
- Golwalkar, R.; Mehendale, N. Masked-face recognition using deep metric learning and FaceMaskNet-21. Appl. Intell. 2022, 52, 13268–13279. [Google Scholar] [CrossRef]
- Li, Y.; Guo, K.; Lu, Y.; Liu, L. Cropping and attention based approach for masked face recognition. Appl. Intell. 2021, 51, 3012–3025. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, G. DSA-Face: Diverse and sparse attentions for face recognition robust to pose variation and occlusion. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4534–4543. [Google Scholar] [CrossRef]
- Nagrath, P.; Jain, R.; Madan, A.; Arora, R.; Kataria, P.; Hemanth, J. SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2. Sustain. Cities Soc. 2021, 66, 102692. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ge, S.; Zhang, D.; Li, J. Look through masks: Towards masked face recognition with de-occlusion distillation. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 3016–3024. [Google Scholar]
- Wang, Z.; Wang, G.; Huang, B.; Xiong, Z.; Hong, Q.; Wu, H.; Yi, P.; Jiang, K.; Wang, N.; Pei, Y.; et al. Masked face recognition dataset and application. arXiv 2020, arXiv:2003.09093. [Google Scholar]
- Ding, F.; Peng, P.; Huang, Y.; Geng, M.; Tian, Y. Masked face recognition with latent part detection. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 2281–2289. [Google Scholar]
- Goyal, H.; Sidana, K.; Singh, C.; Jain, A.; Jindal, S. A real time face mask detection system using convolutional neural network. Multimed. Tools Appl. 2022, 81, 14999–15015. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Kathuria, M.; Kaushik, T. Face mask detection using deep learning: An approach to reduce risk of Coronavirus spread. J. Biomed. Inform. 2021, 120, 103848. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Xu, X.; Du, M.; Guo, H.; Chang, J.; Zhao, X. Lightweight facenet based on mobilenet. Int. J. Intell. Sci. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- ImageNet. Available online: http://www.image-net.org (accessed on 11 March 2021).
- Prajnasb. Observations. Available online: https://github.com/prajnasb/observations (accessed on 14 April 2020).
- Room, C. Confusion Matrix. Mach. Learn 2019, 6, 27. [Google Scholar]
- Hong, Q.; Wang, Z.; He, Z.; Wang, N.; Tian, X.; Lu, T. Masked face recognition with identification association. In Proceedings of the 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), Baltimore, MD, USA, 9–11 November 2020; IEEE: Piscatway, NJ, USA, 2020; pp. 731–735. [Google Scholar]
- Anwar, A.; Raychowdhury, A. Masked face recognition for secure authentication. arXiv 2020, arXiv:2008.11104. [Google Scholar]
- Farman, H.; Khan, T.; Khan, Z.; Habib, S.; Islam, M.; Ammar, A. Real-Time Face Mask Detection to Ensure COVID-19 Precautionary Measures in the Developing Countries. Appl. Sci. 2022, 12, 3879. [Google Scholar] [CrossRef]
- Alzu’bi, A.; Albalas, F.; AL-Hadhrami, T.; Younis, L.B.; Bashayreh, A. Masked Face Recognition Using Deep Learning: A Review. Electronics 2021, 10, 2666. [Google Scholar] [CrossRef]
Head:Layers Name | Output Size | Parameters Used | |||
---|---|---|---|---|---|
Input-1 (input layer) | (224,224,3) | 0 | |||
Convolution1D/Convolution2D | (112,112,32) | 864 | |||
Batch Normalization_Conv1 | (112,112,32) | 128 | |||
ReLU_Conv1 | (112,112,32) | 0 | |||
Extended Depthwise_Conv | (112,112,32) | 288 | |||
Extended Depthwise_Conv_BN | (112,112,32) | 128 | |||
Extended Depthwise_Conv_ReLU | (112,112,32) | 0 | |||
Extended Convolution2D | (112,112,16) | 512 | |||
Extended Batch Normalization_Conv | (112,112,16) | 64 | |||
Block-1:Layers Name | Output size | Parameters used | Block-2:Layers Name | Output size | Parameters used |
Extended_Conv2D | (112,112,96) | 1536 | Extended_Conv2D | (56,56,144) | 3456 |
Extended_BN | (112,112,96) | 384 | Extended_BN | (56,56,144) | 576 |
Extended_ReLU | (112,112,96) | 0 | Extended_ReLU | (56,56,144) | 0 |
Zero Padding2D | (113,113,96) | 0 | Depthwise_Convolution | (56,56,144) | 1296 |
Depthwise_Convolution | (56,56,96) | 864 | Depthwise_BN | (56,56,144) | 576 |
Depthwise_BN | (56,56,96) | 384 | Depthwise_ReLU | (56,56,144) | 0 |
Depthwise_ReLU | (56,56,96) | 0 | Convolution2D | (56,56,24) | 3456 |
Convolution2D | (56,56,24) | 2304 | Batch Normalization | (56,56,24) | 96 |
Batch Normalization | (56,56,24) | 96 | Add | (56,56,24) | 0 |
Block-3:Layers Name | Output size | Parameters used | Block-4:Layers Name | Output size | Parameters used |
Extended_Conv2D | (56,56,144) | 3456 | Extended_Conv2D | (28,28,192) | 6144 |
Extended_BN | (56,56,144) | 576 | Extended_BN | (28,28,192) | 768 |
Extended_ReLU | (56,56,144) | 0 | Extended_Relu | (28,28,192) | 0 |
Zero Padding2D | (57,57,144) | 0 | Depthwise_Conv | (28,28,192) | 1728 |
Depthwise_Conv | (28,28,144) | 1296 | Depthwise_BN | (28,28,192) | 768 |
Depthwise_BN | (28,28,144) | 576 | Depthwise_ReLU | (28,28,192) | 0 |
Depthwise_ReLU | (28,28,144) | 0 | Convolution2D | (28,28,32) | 6144 |
Convolution2D | (28,28,32) | 4608 | Batch Normalization | (28,28,32) | 128 |
Batch Normalization | (28,28,32) | 128 | Add | (28,28,32) | 0 |
Block-5:Layers Name | Output size | Parameters used | Block-6:Layers Name | Output size | Parameters used |
Extended_Conv2D | (28,28,192) | 6144 | Extended_Conv2D | (28,28,192) | 6144 |
Extended_BN | (28,28,192) | 768 | Extended_BN | (28,28,192) | 768 |
Extended_ReLU | (28,28,192) | 0 | Extended_ReLU | (28,28,192) | 0 |
Depthwise_Conv | (28,28,192) | 1728 | Zero Padding2D | (29,29,192) | 0 |
Depthwise_BN | (28,28,192) | 768 | Depthwise_Conv | (14,14,192) | 1728 |
Depthwise_ReLU | (28,28,192) | 0 | Depthwise_BN | (14,14,192) | 768 |
Convolution2D | (28,28,32) | 6144 | Depthwise_ReLU | (14,14,192) | 0 |
Batch Normalization | (28,28,32) | 128 | Convolution2D | (14,14,64) | 12,288 |
Add | (28,28,32) | 0 | Batch Normalization | (14,14,64) | 256 |
Block-7:Layers Name | Output size | Parameters used | Block-8:Layers Name | Output size | Parameters used |
Extended_Conv2D | (14,14,384) | 24,576 | Extended_Conv2D | (14,14,384) | 24,576 |
Extended_BN | (14,14,384) | 1536 | Extended_BN | (14,14,384) | 1536 |
Extended_ReLU | (14,14,384) | 0 | Extended_ReLU | (14,14,384) | 0 |
Depthwise_Conv | (14,14,384) | 3456 | Depthwise_Conv | (14,14,384) | 3456 |
Depthwise_BN | (14,14,384) | 1536 | Depthwise_BN | (14,14,384) | 1536 |
Depthwise_ReLU | (14,14,384) | 0 | Depthwise_ReLU | (14,14,384) | 0 |
Convolution2D | (14,14,64) | 24,576 | Convolution2D | (14,14,64) | 24,576 |
Batch Normalization | (14,14,64) | 256 | Batch Normalization | (14,14,64) | 256 |
Add | (14,14,64) | 0 | Add | (14,14,64) | 0 |
Block-9:Layers Name | Output size | Parameters used | Block-10:Layers Name | Output size | Parameters used |
Extended_Conv2D | (14,14,384) | 24,576 | Extended_Conv2D | (14,14,384) | 24,576 |
Extended_BN | (14,14,384) | 1536 | Extended_BN | (14,14,384) | 1536 |
Extended_ReLU | (14,14,384) | 0 | Extended_ReLU | (14,14,384) | 0 |
Depthwise_Conv | (14,14,384) | 3456 | Depthwise_Conv | (14,14,384) | 3456 |
Depthwise_BN | (14,14,384) | 1536 | Depthwise_BN | (14,14,384) | 1536 |
Depthwise_ReLU | (14,14,384) | 0 | Depthwise_ReLU | (14,14,384) | 0 |
Convolution2D | (14,14,64) | 24,576 | Convolution2D | (14,14,96) | 36,864 |
Batch Normalization | (14,14,64) | 256 | Batch Normalization | (14,14,96) | 384 |
Add | (14,14,64) | 0 |
Block-11:Layers Name | Output Size | Parameters Used | Block-12:Layers Name | Output Size | Parameters Used |
---|---|---|---|---|---|
Extended_Conv2D | (14,14,576) | 55,296 | Extended_Conv2D | (14,14,576) | 55,296 |
Extended_BN | (14,14,576) | 2304 | Extended_BN | (14,14,576) | 2304 |
Extended_ReLU | (14,14,576) | 0 | Extended_ReLU | (14,14,576) | 0 |
Depthwise_Conv | (14,14,576) | 5184 | Depthwise_Conv | (14,14,576) | 5184 |
Depthwise_BN | (14,14,576) | 2304 | Depthwise_BN | (14,14,576) | 2304 |
Depthwise_ReLU | (14,14,576) | 0 | Depthwise_ReLU | (14,14,576) | 0 |
Convolution2D | (14,14,96) | 55,296 | Convolution2D | (14,14,96) | 55,296 |
Batch Normalization | (14,14,96) | 384 | Batch Normalization | (14,14,96) | 384 |
Add | (14,14,96) | 0 | Add | (14,14,96) | 0 |
Block-13:Layers Name | Output size | Parameters used | Block-14:Layers Name | Output size | Parameters used |
Extended_Conv2D | (14,14,576) | 55,296 | Extended_Conv2D | (7,7,960) | 153,600 |
Extended_BN | (14,14,576) | 2304 | Extended_BN | (7,7,960) | 3840 |
Extended_ReLU | (14,14,576) | 0 | Extended_ReLU | (7,7,960) | 0 |
Zero Padding2D | (15,15,576) | 0 | Depthwise_Conv | (7,7,960) | 8640 |
Depthwise_Conv | (7,7,576) | 5184 | Depthwise_BN | (7,7,960) | 3840 |
Depthwise_BN | (7,7,576) | 2304 | Depthwise_ReLU | (7,7,960) | 0 |
Depthwise_ReLU | (7,7,576) | 0 | Convolution2D | (7,7,160) | 153,600 |
Convolution2D | (7,7,160) | 92,160 | Batch Normalization | (7,7,160) | 640 |
Batch Normalization | (7,7,160) | 640 | Add | (7,7,160) | 0 |
Block-15:Layers Name | Output size | Parameters used | Block-16:Layers Name | Output size | Parameters used |
Extended_Conv2D | (7,7,960) | 153,600 | Extended_Conv2D | (7,7,960) | 153,600 |
Extended_BN | (7,7,960) | 3840 | Extended_BN | (7,7,960) | 3840 |
Extended_ReLU | (7,7,960) | 0 | Extended_ReLU | (7,7,960) | 0 |
Depthwise_Conv | (7,7,960) | 8640 | Depthwise_Conv | (7,7,960) | 8640 |
Depthwise_BN | (7,7,960) | 3840 | Depthwise_BN | (7,7,960) | 3840 |
Depthwise_ReLU | (7,7,960) | 0 | Depthwise_ReLU | (7,7,960) | 0 |
Convolution2D | (7,7,160) | 153,600 | Convolution2D | (7,7,320) | 307,200 |
Batch Normalization | (7,7,160) | 640 | Batch Normalization | (7,7,320) | 1280 |
Add | (7,7,160) | 0 | |||
Base:Layers Name | Output size | Parameters used | |||
Convolution2D_Conv1 | (7,7,1280) | 409,600 | |||
Batch Normalization_Conv1 | (7,7,1280) | 5120 | |||
ReLU_Out | (7,7,1280) | 0 | |||
AveragePooling2D | (1,1,1280) | 0 | |||
Flatten | (1280) | 0 | |||
Dense | (128) | 163,968 | |||
Dropout | (128) | 0 | |||
Dense_1 | (2) | 258 | |||
Total parameters: 2,422,210 | |||||
Trainable parameters: 164,226 | |||||
Non-trainable parameters: 2,257,984 |
Sl.No. | Model Version (Dimension) | Accuracy% | Precision% | Recall% | F1-Score% | Error Rate% |
---|---|---|---|---|---|---|
1 | MobileNetV1 () | 93.84% | 99.18% | 88.40% | 93.48% | 6.16% |
2 | MobileNetV1 () | 94.20% | 99.19% | 89.13% | 93.89% | 5.80% |
3 | MobileNetV1 () | 94.56% | 99.20% | 89.85% | 94.29% | 5.44% |
4 | MobileNetV1 () | 94.92% | 98.43% | 91.30% | 94.73% | 5.08% |
5 | MobileNetV2 () | 97.82% | 98.53% | 97.10% | 97.80% | 2.18% |
6 | MobileNetV2 () | 98.19% | 98.54% | 97.82% | 98.18% | 1.81% |
7 | MobileNetV2 () | 98.55% | 98.55% | 98.55% | 98.55% | 1.45% |
8 | MobileNetV2 () | 99.64% | 100% | 99.28% | 99.64% | 0.36% |
Sl.No. | Model Name | Year | Accuracy% |
---|---|---|---|
1 | ResNet50 [19] | 2021 | 47.00% |
2 | OpenFace [16] | 2020 | 63.18% |
3 | DeepFace [16] | 2020 | 63.78% |
4 | MTCNN+FaceNet [48] | 2020 | 64.23% |
5 | FaceNet [16] | 2020 | 67.48% |
6 | VGG-Face [16] | 2020 | 68.17% |
7 | IAMGAN [28] | 2020 | 86.50% |
8 | FaceMaskNet21 [29] | 2022 | 88.92% |
9 | DSA-Face [31] | 2021 | 91.20% |
10 | CNNs [20] | 2022 | 91.30% |
11 | CBAM [30] | 2021 | 92.61% |
12 | SSDMNV2 [32] | 2021 | 92.64% |
13 | GANs [33] | 2020 | 94.10% |
14 | MGL [34] | 2020 | 95.00% |
15 | FaceNet [49] | 2020 | 97.00% |
16 | LPD [35] | 2020 | 97.94% |
17 | CNN [36] | 2022 | 98.00% |
18 | ResNet50 [37] | 2021 | 98.20% |
19 | LW-CNN [50] | 2022 | 98.47% |
20 | CMNV2 (Proposed Model) | 2022 | 99.64% |
Sl.No. | Name of the Model | Parameters Used | Total Layers Used |
---|---|---|---|
1 | VGG19 | 143,000,000 | 19 |
2 | VGG16 | 138,000,000 | 16 |
3 | AlexNet | 62,000,000 | 8 |
4 | InceptionV2 | 56,000,000 | 48 |
5 | Inception-ResNetV2 | 56,000,000 | 164 |
6 | ResNet101 | 44,000,000 | 101 |
7 | InceptionV4 | 43,000,000 | 164 |
8 | InceptionV3 | 24,000,000 | 48 |
9 | Xception | 23,000,000 | 71 |
10 | ResNet50 | 22,500,000 | 50 |
11 | MobileNetV1 | 13,000,000 | 30 |
12 | GoogleNet | 7,000,000 | 27 |
13 | MobileNetV2 | 3,500,000 | 53 |
14 | CMNV2 (Proposed Model) | 164,226 | 159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, B.A.; Bansal, M. Face Mask Detection on Photo and Real-Time Video Images Using Caffe-MobileNetV2 Transfer Learning. Appl. Sci. 2023, 13, 935. https://doi.org/10.3390/app13020935
Kumar BA, Bansal M. Face Mask Detection on Photo and Real-Time Video Images Using Caffe-MobileNetV2 Transfer Learning. Applied Sciences. 2023; 13(2):935. https://doi.org/10.3390/app13020935
Chicago/Turabian StyleKumar, B. Anil, and Mohan Bansal. 2023. "Face Mask Detection on Photo and Real-Time Video Images Using Caffe-MobileNetV2 Transfer Learning" Applied Sciences 13, no. 2: 935. https://doi.org/10.3390/app13020935
APA StyleKumar, B. A., & Bansal, M. (2023). Face Mask Detection on Photo and Real-Time Video Images Using Caffe-MobileNetV2 Transfer Learning. Applied Sciences, 13(2), 935. https://doi.org/10.3390/app13020935