Experimental Stability Analysis of Vertical Takeoff and Landing System Based on Robust Control Strategy
Abstract
:1. Introduction
2. Mathematical Model of VTOL Platform with PI Control
2.1. General Case for a Second-Order System
2.2. Actuator Model of VTOL System
2.3. PI Controller for Actuator Model
3. Cascaded Controller and ISTSMC for the VTOL System
3.1. Cascaded Control Algorithm
3.2. ISTSMC for VTOL System
Validation of Control Law
4. Simulation Results Using PI, PID, and ISTSMC Strategy
Experimental Results Based on PI and Cascaded Controller
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bashi, O.I.D.; Hasan, W.W.; Azis, N.; Shafie, S.; Wagatsuma, H. Autonomous Quadcopter Altitude for Measuring Risky Gases in Hazard Area. J. Telecommun. Electron. Comput. Eng. (JTEC) 2018, 10, 31–34. [Google Scholar]
- Erginer, B.; Altuğ, E. Design and implementation of a hybrid fuzzy logic controller for a quadrotor VTOL vehicle. Int. J. Control. Autom. Syst. 2012, 10, 61–70. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, G.; Chen, H. Impedance control of a bio-inspired flying and adhesion robot. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–5 June 2014; pp. 3564–3569. [Google Scholar] [CrossRef]
- Bouabdallah, S.; Noth, A.; Siegwart, R. PID vs LQ control techniques applied to an indoor micro quadrotor. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2451–2456. [Google Scholar] [CrossRef]
- Erginer, B.; Altug, E. Modeling and PD control of a quadrotor VTOL vehicle. In Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; pp. 894–899. [Google Scholar] [CrossRef]
- Çakici, F.; Leblebicioğlu, M.K. Control system design of a vertical take-off and landing fixed-wing UAV. IFAC Pap. 2016, 49, 267–272. [Google Scholar] [CrossRef]
- Oo, W.; Tun, H.; Naing, Z.; Moe, W. Design of vertical take-off and landing (VTOL) aircraft system. Int. J. Sci. Technol. Res. 2017, 6, 179–183. [Google Scholar]
- Ang, K.H.; Chong, G.; Li, Y. PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 2005, 13, 559–576. [Google Scholar] [CrossRef]
- Rabah, M.; Rohan, A.; Han, Y.J.; Kim, S.H. Design of fuzzy-PID controller for quadcopter trajectory-tracking. Int. J. Fuzzy Log. Intell. Syst. 2018, 18, 204–213. [Google Scholar] [CrossRef]
- Roberts, A.; Tayebi, A. Adaptive position tracking of VTOL UAVs. IEEE Trans. Robot. 2010, 27, 129–142. [Google Scholar] [CrossRef]
- Hua, M.D.; Hamel, T.; Morin, P.; Samson, C. A control approach for thrust-propelled underactuated vehicles and its application to VTOL drones. IEEE Trans. Autom. Control 2009, 54, 1837–1853. [Google Scholar] [CrossRef]
- Abdessameud, A.; Tayebi, A. Global trajectory tracking control of VTOL-UAVs without linear velocity measurements. Automatica 2010, 46, 1053–1059. [Google Scholar] [CrossRef]
- Naldi, R.; Furci, M.; Sanfelice, R.G.; Marconi, L. Robust global trajectory tracking for underactuated VTOL aerial vehicles using inner-outer loop control paradigms. IEEE Trans. Autom. Control 2016, 62, 97–112. [Google Scholar] [CrossRef]
- Roberts, A.D. Attitude Estimation and Control of VTOL UAVs. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 2011. [Google Scholar]
- Hedjar, R.; Al Zuair, M.A. Robust altitude stabilization of VTOL-UAV for payloads delivery. IEEE Access 2019, 7, 73583–73592. [Google Scholar] [CrossRef]
- Stingu, E.; Lewis, F. Design and implementation of a structured flight controller for a 6DoF quadrotor using quaternions. In Proceedings of the 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, 24–26 June 2009; pp. 1233–1238. [Google Scholar] [CrossRef]
- Voos, H. Nonlinear control of a quadrotor micro-UAV using feedback-linearization. In Proceedings of the IEEE International Conference on Mechatronics, Málaga, Spain, 14–17 April 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Madani, T.; Benallegue, A. Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles. In Proceedings of the American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 5887–5892. [Google Scholar] [CrossRef]
- Besnard, L.; Shtessel, Y.B.; Landrum, B. Control of a quadrotor vehicle using sliding mode disturbance observer. In Proceedings of the American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 5230–5235. [Google Scholar] [CrossRef]
- Efe, M.O. Robust low altitude behavior control of a quadrotor rotorcraft through sliding modes. In Proceedings of the Mediterranean Conference on Control Automation, Athens, Greece, 27–29 June 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, R.; Quan, Q.; Cai, K.Y. Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 2011, 5, 1140–1146. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Dorrell, D.G.; Guo, Y. Modified PI controller with improved steady-state performance and comparison with PR controller on direct matrix converters. Chin. J. Electr. Eng. 2019, 5, 53–66. [Google Scholar] [CrossRef]
- Hou, Q.; Ding, S.; Yu, X.; Mei, K. A super-twisting-like fractional controller for SPMSM drive system. IEEE Trans. Ind. Electron. 2021, 69, 9376–9384. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, L.; Ji, W. Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives. IEEE Trans. Transp. Electrif. 2021, 7, 2753–2762. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, Q.; Ji, W.; Ding, S. An improved three-vector-based model predictive current control method for surfacemounted PMSM drives. IEEE Trans. Transp. Electrif. 2022, 8, 4418–4430. [Google Scholar] [CrossRef]
- Azid, S.I.; Shankaran, V.P.; Mehta, U. Fractional PI controller for integrating plants. In Proceedings of the 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, 13–15 December 2020; pp. 904–909. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, W.; Zhang, M.; Lv, S. Improved integral sliding mode control-based attitude control design and experiment for high maneuverable AUV. J. Mar. Sci. Eng. 2022, 10, 795. [Google Scholar] [CrossRef]
- Dalwadi, N.; Deb, D.; Rath, J.J. Biplane trajectory tracking using hybrid controller based on backstepping and integral terminal sliding mode control. Drones 2022, 6, 58. [Google Scholar] [CrossRef]
- Duan, L.; Su, X.; Tang, Y.; Yang, H.; Zhang, H. Application of PID Tracking Control in Inverted Pendulum System. In Proceedings of the IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021; Volume 4, pp. 1815–1819. [Google Scholar] [CrossRef]
- Kadu, C.B.; Patil, C.Y. Design and implementation of stable PID controller for interacting level control system. Procedia Comput. Sci. 2016, 79, 737–746. [Google Scholar] [CrossRef]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 2009; Volume 199, p. 705. [Google Scholar]
- Yang, J.; Li, S.; Su, J.; Yu, X. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 2013, 49, 2287–2291. [Google Scholar] [CrossRef]
- Alam, W.; Mehmood, A.; Ali, K.; Javaid, U.; Alharbi, S.; Iqbal, J. Nonlinear control of a flexible joint robotic manipulator with experimental validation. Stroj. Vestn. J. Mech. Eng. 2018, 64, 47–55. [Google Scholar] [CrossRef]
- Ajwad, S.A.; Iqbal, J.; Islam, R.U.; Alsheikhy, A.; Almeshal, A.; Mehmood, A. Optimal and robust control of multi DOF robotic manipulator. Des. Hardw. Realiz. Cybern. Syst. 2018, 49, 77–93. [Google Scholar] [CrossRef]
- Chaouch, S.; Abdou, L.; Drid, S.; Chrifi-Alaoui, L. Optimized torque control via backstepping using genetic algorithm of induction motor. J. Control. Meas. Electron. Comput. Commun. 2016, 57, 379–386. [Google Scholar] [CrossRef]
- Ilyas, M.; Iqbal, J.; Ahmad, S.; Uppal, A.A.; Imtiaz, W.A.; Riaz, R.A. Hypnosis regulation in propofol anaesthesia employing super-twisting sliding mode control to compensate variability dynamics. IET Syst. Biol. 2020, 14, 59–67. [Google Scholar] [CrossRef]
- Aboud, W.S.; Al-Amir, H.S.A.; Alhamdany, A.A.; Kadhim, F.M. Overcome uncertainties of vertical take-off and landing aircraft based on optimal sliding mode control. Indones. J. Electr. Eng. Comput. Sci. 2023, 29, 703–714. [Google Scholar]
- Jia, T.; Chen, X.; He, L.; Zhao, F.; Qiu, J. Finite-time synchronization of uncertain fractional-order delayed memristive neural networks via adaptive sliding mode control and its application. Fractal Fract. 2022, 6, 502. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, X.; Zhao, K.; Guirao, J.L.; Saeed, T.; Chen, H. The Tracking Control of the Variable-Order Fractional Differential Systems by Time-Varying Sliding-Mode Control Approach. Fractal Fract. 2022, 6, 231. [Google Scholar] [CrossRef]
Parameter Name | Description | Unit |
---|---|---|
Balancing weight mass | 258 | |
Fan assembly mass | 127 g | |
Link body mass | 60 g | |
Length from pivot to center of balancing weight | 72.5 mm | |
Length from pivot to center of fan | 155 mm | |
Length from pivot to center of link body | 7 mm | |
Estimated damping of the pivot | 0.002 Nm/(rad/s) |
Sr. No. | Parameter | Value |
---|---|---|
1. | Damping ratio | 0.1 |
2. | Settling time | 18 s |
3. | Overshoot | 72% |
4. | Peak time | 2.136 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilyas, M.; Aziz, S.; Shah, I.; Khan, A.; Jung, D.-W. Experimental Stability Analysis of Vertical Takeoff and Landing System Based on Robust Control Strategy. Appl. Sci. 2023, 13, 11209. https://doi.org/10.3390/app132011209
Ilyas M, Aziz S, Shah I, Khan A, Jung D-W. Experimental Stability Analysis of Vertical Takeoff and Landing System Based on Robust Control Strategy. Applied Sciences. 2023; 13(20):11209. https://doi.org/10.3390/app132011209
Chicago/Turabian StyleIlyas, Muhammad, Shahid Aziz, Imran Shah, Awais Khan, and Dong-Won Jung. 2023. "Experimental Stability Analysis of Vertical Takeoff and Landing System Based on Robust Control Strategy" Applied Sciences 13, no. 20: 11209. https://doi.org/10.3390/app132011209
APA StyleIlyas, M., Aziz, S., Shah, I., Khan, A., & Jung, D. -W. (2023). Experimental Stability Analysis of Vertical Takeoff and Landing System Based on Robust Control Strategy. Applied Sciences, 13(20), 11209. https://doi.org/10.3390/app132011209