Lithological Mapping Research Based on Feature Selection Model of ReliefF-RF
Abstract
:1. Introduction
2. Geological Background of Study Area
3. Material and Methods
3.1. Pre-Processing of Data
3.2. Feature Extraction
3.3. Sampling
3.4. Feature Selection and Lithological Mapping Method
4. Results
4.1. Comparison between Lithological Maps of Different Multispectral Data
4.2. Comparison between Lithological Maps of Different Optimisation Methods
4.3. Dataset Combination and Optimisation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amer, R.; Kusky, T.; Ghulam, A. Lithological mapping in the central eastern desert of Egypt using ASTER data. J. Afr. Earth Sci. 2010, 56, 75–82. [Google Scholar] [CrossRef]
- Amri, K.; Rabai, G.; Amri, K.; Rabai, G.; Benbakhti, I.M.; Khennouche, M.N. Mapping geology in Djelfa District (Saharan Atlas, Algeria), using Landsat 7 ETM+ data: An alternative method to discern lithology and structural elements. Arab. J. Geosci. 2017, 10, 87. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Alirezaei, S.; Kontank, D.J. Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo–Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geol. Rev. 2015, 70, 290–304. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoerschb, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Z.; Hui, F.; Cheng, X.; Ouyang, L. ESA Sentinel-2A/B satellite: Characteristics and applications. J. Beijing Norm. Univ. (Nat. Sci.) 2019, 55, 61–69. [Google Scholar]
- Ge, W.; Chen, Q.; Jing, L.; Armenakis, C.; Ding, H. Lithological discrimination using ASTER and Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia, China. Adv. Space Res. 2018, 62, 1702–1716. [Google Scholar] [CrossRef]
- Abrams, M.; Yamaguchi, Y. Twenty Years of ASTER Contributions to Lithologic Mapping and Mineral Exploration. Remote Sens. 2019, 11, 1394. [Google Scholar] [CrossRef]
- Adiri, Z.; Lhissou, R.; Hartia, E.; Jellouli, A.; Chakouri, M. Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geol. Rev. 2020, 117, 103332. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; Van der Werff, H.M.A.; Van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Pournamdari, M.; Hashim, M.; Pour, A.B. Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran. Adv. Space Res. 2014, 54, 694–709. [Google Scholar] [CrossRef]
- Ayoobi, I.; Tangestani, M.H. The effect of minimum noise fraction data input on success of artificial neural network in lithological mapping of a magmatic terrain with ASTER data: A case study from SE Iran. Remote Sens. Appl. Soc. Environ. 2017, 7, 21–26. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Hong, J.K.; Park, Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geol. Rev. 2019, 108, 112–133. [Google Scholar] [CrossRef]
- Bentahar, I.; Raji, M. Comparison of Landsat OLI, ASTER, and Sentinel 2A data in lithological mapping: A Case study of Rich area (Central HighAtlas, Morocco). Adv. Space Res. 2021, 67, 945–963. [Google Scholar] [CrossRef]
- Shebl, A.; Csamer, A.; Abdellatif, M. Lithological mapping enhancement by integrating Sentinel 2 and gamma-ray data utilizing support vector machine: A case study from Egypt. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102619. [Google Scholar] [CrossRef]
- Arsalan, O.; Richard, G. Improving Lithological Mapping by SVM Classification of Spectral and Morphological Features: The Discovery of a New Chromite Body in the Mawat Ophiolite Complex (Kurdistan, NE Iraq). Remote Sens. 2014, 6, 30. [Google Scholar]
- Li, N.; Frei, M.; Altermann, W. Textural and knowledge-based lithological classification of remote sensing data in Southwestern Prieska sub-basin, Transvaal Supergroup, South Africa. J. Afr. Earth Sci. 2011, 60, 237–246. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R. Integration of spectral, spatial and morphometric data into lithological mapping: A comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. J. Asian Earth Ences 2017, 146, 90–102. [Google Scholar] [CrossRef]
- Grebby, S.; Naden, J.; Cunningham, D.; Tansey, K. Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sens. Environ. 2011, 115, 214–226. [Google Scholar] [CrossRef]
- He, J.; Harris, J.R.; Sawada, M.; Behnia, P. A comparison of classification algorithms using Landsat-7 and Landsat-8 data for mapping lithology in Canada’s Arctic. Int. J. Remote Sens. 2015, 36l, 2252–2276. [Google Scholar] [CrossRef]
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Yu, L.; Porwal, A.; Holden, E.J.; Dentith, M.C. Towards automatic lithological classification from remote sensing data using support vector machines. Comput. Geosci. 2012, 45, 229–239. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Harris, J.R.; Grunsky, E.C. Predictive lithological mapping of Canada’s North using Random Forest classification applied to geophysical and geochemical data. Comput. Geosci. 2015, 80, 9–25. [Google Scholar] [CrossRef]
- Huang, Y.; Mccullagh, P.J.; Black, N.D. An optimization of ReliefF for classification in large datasets. Data Knowl. Eng. 2009, 68, 1348–1356. [Google Scholar] [CrossRef]
- Gheyas, I.A.; Smith, L.S. Feature Subset Selection in Large Dimensionality Domains; Elsevier Science Inc.: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Gutlein, M.; Frank, E.; Hall, M.; Karwath, A. Large-scale attribute selection using wrappers. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 332–339. [Google Scholar] [CrossRef]
- Liu, X.W.; Wang, L.; Zhang, J.; Yin, J.; Liu, H. Global and local structure preservation for feature selection. IEEE Trans. Neural Netw. Learn. Syst. 2017, 25, 1083–1095. [Google Scholar]
- Zhang, B.; Li, Y.; Chai, Z. A novel random multi-subspace based ReliefF for feature selection. Knowl.-Based Syst. 2022, 252, 109400. [Google Scholar] [CrossRef]
- Lin, X.; Yang, F.; Zhou, L.; Yin, P.; Kong, H.; Xing, W.; Lu, X.; Jia, L.; Wang, Q.; Xu, G. A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information. J. Chromatogr. B 2012, 910, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Grunwald, S.; Myers, D.B.; Kim, J.; Harris, W.G.; Comerford, N.B. Holistic environmental soil-landscape modeling of soil organic carbon. Environ. Model. Softw. 2014, 57, 202–215. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Origll, S.; Cowie, A.; Clark, A.; Liu, D.; Simpson, M.; McGowen, I.; Sides, T. Estimting soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecol. Indic. Integr. Monit. Assess. Manag. 2018, 88, 425–438. [Google Scholar]
- Seijo-Pardo, B.; Porto-Díaz, I.; Bolón-Canedo, V.; Alonso-Betanzos, A. Ensemble feature selection: Homogeneous and heterogeneous approaches. Knowl.-Based Syst. 2016, 118, 124–139. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Liu, F.; Zhao, Y.G.; Song, X.D.; Zhang, G.L. An integrated method of selecting environmental covariates for predictive soil depth mapping. J. Integr. Agric. 2019, 18, 57–71. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. Feature Selection for High-Dimensional Data. In Artificial Intelligence: Foundations, Theory, and Algorithms; Springer: Berlin/Heidelberg, Germany, 2016; p. 5. Available online: https://link.springer.com/chapter/10.1007/978-3-319-21858-8_6 (accessed on 1 October 2023).
- Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1200–1205. [Google Scholar] [CrossRef]
- Pan, G.; Li, X.; Wang, L.; Ding, J.; Chen, Z. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions. Geol. Bull. China 2002, 21, 701–707. [Google Scholar]
- Zhao, Z.; Wei, J.; Fu, L.; Liang, S.; Zhao, S. The Early Paleozoic Xitieshan syn-collisional granite in the North Qaidam ultrahigh-pressure metamorphic belt, NW China: Petrogenesis and implications for continental crust growth. Lithos 2017, 278–281, 140–152. [Google Scholar] [CrossRef]
- Zhang, C.; Bader, T.; Zhang, L.; Roermund, H. The multi-stage tectonic evolution of the Xitieshan terrane, North Qaidam orogen, western China: From Grenville-age orogeny to early-Paleozoic ultrahigh-pressure metamorphism. Gondwana Res. 2017, 41, 290–300. [Google Scholar] [CrossRef]
- Song, S.G.; Yang, J.S.; Xu, Z.Q.; Liou, J.G.; Shi, R.D. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. J. Metamorph. Geol. 2003, 21, 631–644. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Iwasaki, A.; Tonooka, H. Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2747–2751. [Google Scholar] [CrossRef]
- Zuo, R. Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). J. Geochem. Explor. 2011, 111, 13–22. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Guan, L.; Xie, W.; Pei, J. Segmented minimum noise fraction transformation for efficient feature extraction of hyperspectral images. Pattern Recognit. 2015, 48, 3216–3226. [Google Scholar]
- Baid, S.; Tabit, A.; Algouti, A.; Algouti, A.; Nafouri, I.; Souddi, S.; Aboulfaraj, A.; Ezzahzi, S.; Elgouat, A. Lithological discrimination and mineralogical mapping using Landsat-8 OLI and ASTER remote sensing data: Igoudrane region, jbel saghro, Anti Atlas, Morocco. Heliyon 2023, 9, e17363. [Google Scholar] [CrossRef]
- Jutten, C.; Herault, J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process. 1991, 124, 1–10. [Google Scholar] [CrossRef]
- Gomez, C.; Borgne, H.L.; Allemand, P.; Delacour, C.; Ledru, P. N-FindR method versus independent component analysis for lithological identification in hyperspectral imagery. Int. J. Remote Sens. 2007, 28, 5315–5338. [Google Scholar] [CrossRef]
- Chica-Olmo, M.F. Abarca-Hernández. Computing geostatistical image texture for remotely sensed data classification. Comput. Geosci. 2000, 26, 373–383. [Google Scholar] [CrossRef]
- Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. Stud. Media Commun. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Kira, K.; Rendell, L.A. A practical approach to feature selection. Int. Workshop Mach. Learn. 1992, 1992, 249–256. [Google Scholar]
- Kononenko, I. Estimating Attributes: Analysis and Extensions of RELIEF; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar] [CrossRef]
- Breiman, L. Random forest. Mach. Learn 2001, 45, 5–32. [Google Scholar]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for landcover classification. Pattern Recogn. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Hapfelmeier, A.; Ulm, K. Variable selection by Random Forests using data with missing values. Comput. Stat. Data Anal. 2014, 10, 139. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, H.; Wu, Q. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period. Ecol. Indic. 2022, 135, 108529. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Hsu, C.; Chang, C.; Lin, C. A practical guide to support vector classification. BJU Int. 2008, 101, 1396–1400. [Google Scholar]
- Ge, W.; Cheng, Q.; Tang, Y.; Jing, L.; Gao, C. Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China. Remote Sens. 2018, 10, 638. [Google Scholar] [CrossRef]
- Masoumi, F.; Eslamkish, T.; Abkar, A.A.; Honarmand, M.; Harris, J.R. Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping. J. Afr. Earth Sci. 2017, 129, 445–457. [Google Scholar] [CrossRef]
Category Number | Stratigraphic Chronology | Lithology |
---|---|---|
1 | Qpl4 | Modern Pvoluvial–alluvial deposit block, gravel and sandy soil |
2 | Q3pl | Piedmont and terrace Pvoluvial gravel layer |
3 | Q1q | The upper loess contains gravel sandstone and marl lens, and the lower part is a thick brown conglomerate |
4 | N2y | Interbedding of yellowish green thick gravelly sandstone and greyish purple medium thick argillaceous siltstone |
5 | E3g | Yellowish green block bedded rock, lithic feldspathic quartz sandstone intercalated with purplish red siltstone and light grey medium thick marl |
6 | E1–21 | Reddish- and yellowish-brown block layered gravels with purple calcareous feldspar sandstone |
7 | Kqn | Purplish red thick gravel with pebbly sandstone or greyish feldspathic quartz sandstone |
8 | Z2dk | Interbedding of biotite plagioclase gneiss and marble |
9 | Z1bdk | Interbedding of plagioclase amphibole and migmatised biotite plagioclase gneiss |
10 | Z1adk | Migmatisation, biotite plagioclase gneiss with garnet sillimanite mica schist |
11 | J3h | Reddish thick fine sandstone and clay rock interbedded with blue-grey siltstone belt |
12 | J1–2 | Interbedding of greyish white gravelly sandstone and black shale intercalated with coal seam |
13 | Cb3zh | Yellowish grey dolomite and purple sandstone interbedded, with boulder at the bottom |
14 | Cc3zh | Light grey thick-banded crystalline limestone intercalated with phyllite and calcareous slate |
Sentinel-2B | Landsat-8 | ASTER | ||||||
---|---|---|---|---|---|---|---|---|
Band | Central Wavelength (nm) | Spatial Resolution (m) | Band | Central Wavelength (nm) | Spatial Resolution (m) | Band | Central Wavelength (nm) | Spatial Resolution (m) |
B1 | 442.3 | 60 | B1 | 443 | 30 | B1 | 556 | 15 |
B2 | 492.1 | 10 | B2 | 482.5 | B2 | 661 | ||
B3 | 559 | B3 | 562.5 | B3N | 807 | |||
B4 | 665 | B4 | 655 | B3B | 807 | |||
B5 | 703.8 | 20 | B5 | 865 | B4 | 1656 | 30 | |
B6 | 739.1 | B6 | 1610 | B5 | 2167 | |||
B7 | 779.7 | B7 | 2200 | B6 | 2209 | |||
B8 | 833 | 10 | B8 | 640 | 15 | B7 | 2262 | |
B8a | 864 | 20 | B9 | 1375 | B8 | 2336 | ||
B9 | 943.2 | 60 | B10 | 10,900 | B9 | 2400 | ||
B10 | 1376.9 | B11 | 12,000 | B10 | 8291 | 90 | ||
B11 | 1610.4 | 20 | B11 | 8634 | ||||
B12 | 2185.7 | B12 | 9075 | |||||
B13 | 10,657 | |||||||
B14 | 11,318 |
Eigenvalue | Percentage | Eigenvalue | Percentage | Eigenvalue | Percentage | |||
---|---|---|---|---|---|---|---|---|
pc1 | 4,485,100.755 | 93.42% | MNF1 | 49.297124 | 34.19% | IC1 | 1 | 10.00% |
pc2 | 149,135.8372 | 3.11% | MNF2 | 43.139567 | 29.71% | IC2 | 1 | 10.00% |
pc3 | 103,718.3366 | 2.16% | MNF3 | 17.33235 | 11.86% | IC3 | 1 | 10.00% |
pc4 | 31,448.10436 | 0.66% | MNF4 | 12.900324 | 8.76% | IC4 | 1 | 10.00% |
pc5 | 14,635.23885 | 0.30% | MNF5 | 9.778669 | 6.60% | IC5 | 1 | 10.00% |
pc6 | 10,136.33866 | 0.21% | MNF6 | 3.930291 | 2.63% | IC6 | 1 | 10.00% |
pc7 | 2356.034608 | 0.05% | MNF7 | 2.299615 | 1.53% | IC7 | 1 | 10.00% |
pc8 | 1785.780308 | 0.04% | MNF8 | 2.100346 | 1.39% | IC8 | 1 | 10.00% |
pc9 | 1383.225922 | 0.03% | MNF9 | 1.75929 | 1.16% | IC9 | 1 | 10.00% |
pc10 | 1199.32786 | 0.02% | MNF10 | 1.649774 | 1.08% | IC10 | 1 | 10.00% |
Stratigraphic Chronology | Area (km2) | Training Samples | Test Samples |
---|---|---|---|
Qpl4 | 3.79 | 1711 | 567 |
Q3pl | 24.14 | 2945 | 949 |
Q1q | 4.63 | 1239 | 357 |
N2y | 1.72 | 1447 | 175 |
E3g | 19.56 | 3227 | 1337 |
E1–21 | 6.73 | 1718 | 620 |
Kqn | 7.84 | 2348 | 876 |
Z2dk | 1.68 | 1099 | 384 |
Z1bdk | 4.95 | 2331 | 778 |
Z1adk | 5.48 | 1078 | 376 |
J3h | 4.05 | 1360 | 519 |
J1–2 | 6.80 | 1480 | 629 |
Cb3zh | 0.97 | 1212 | 478 |
Cc3zh | 6.78 | 1345 | 415 |
Lithological Classes | Sentinel-2 | ASTER | Landsat-OIL | ||||||
---|---|---|---|---|---|---|---|---|---|
Overall Accuracy: 60.71% Kappa Coefficient: 0.57 | Overall Accuracy: 55.47% Kappa Coefficient: 0.52 | Overall Accuracy: 55.94% Kappa Coefficient: 0.52 | |||||||
Producer’s | User’s | Average | Producer’s | User’s | Average | Producer’s | User’s | Average | |
Qpl4 | 69.24 | 70.92 | 70.08 | 60.92 | 63.4 | 70.08 | 43.97 | 43.48 | 43.73 |
Q3pl | 76.36 | 85.77 | 81.07 | 81.42 | 83.83 | 81.07 | 32.94 | 24.5 | 28.72 |
Q1q | 45.12 | 40.53 | 42.83 | 31.34 | 47.81 | 42.83 | 57.75 | 50.41 | 54.08 |
N2y | 21.9 | 100 | 60.95 | 18.05 | 77.08 | 60.95 | 48.39 | 73.33 | 60.86 |
E3g | 87.97 | 53.98 | 70.98 | 92.33 | 46.16 | 70.98 | 49.75 | 11.3 | 30.53 |
E1–21 | 48.87 | 31.76 | 40.32 | 47.33 | 41.4 | 40.32 | 55.32 | 54.35 | 54.84 |
Kqn | 56.84 | 39.45 | 48.15 | 57.86 | 34.81 | 48.15 | 55.49 | 35.71 | 45.60 |
Z2dk | 42.17 | 80 | 61.09 | 58.05 | 47.27 | 61.09 | 37.7 | 58.24 | 47.97 |
Z1bdk | 79.76 | 69.57 | 74.67 | 61.7 | 58.39 | 74.67 | 35.42 | 30.08 | 32.75 |
Z1adk | 58.39 | 69.12 | 63.76 | 36.75 | 57.25 | 63.76 | 48.74 | 51.97 | 50.36 |
J3h | 49.76 | 74.32 | 62.04 | 53.59 | 72.26 | 62.04 | 37.04 | 58.2 | 47.62 |
J1–2 | 70.99 | 89.53 | 80.26 | 47.83 | 72.79 | 80.26 | 13.92 | 46.03 | 29.98 |
Cc3zh | 66.78 | 64.16 | 65.47 | 32.94 | 73.4 | 65.47 | 28.42 | 40.87 | 34.65 |
Cb3zh | 42.38 | 73.55 | 57.97 | 76.68 | 55.68 | 57.97 | 52.46 | 65.88 | 59.17 |
Lithological Classes | PCA | MNF | ICA | GLCM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall Accuracy: 62.63% Kappa Coefficient: 0.60 | Overall Accuracy: 64.34% Kappa Coefficient: 0.61 | Overall Accuracy: 65.21% Kappa Coefficient: 0.62 | Overall Accuracy: 58.87% Kappa Coefficient: 0.56 | |||||||||
Producer’s | User’s | Average | Producer’s | User’s | Average | Producer’s | User’s | Average | Producer’s | User’s | Average | |
Qpl4 | 59.26 | 69.89 | 64.58 | 63.90 | 76.20 | 70.05 | 70.78 | 74.87 | 72.83 | 57.60 | 54.37 | 55.99 |
Q3pl | 75.14 | 85.12 | 80.13 | 83.02 | 85.01 | 84.02 | 78.52 | 85.06 | 81.79 | 83.11 | 86.44 | 84.78 |
Q1q | 49.29 | 37.23 | 43.26 | 46.31 | 40.19 | 43.25 | 48.45 | 41.07 | 44.76 | 35.00 | 53.36 | 44.18 |
N2y | 35.40 | 69.37 | 52.39 | 41.15 | 89.50 | 65.33 | 35.63 | 95.09 | 65.36 | 56.78 | 93.21 | 75.00 |
E3g | 86.33 | 58.23 | 72.28 | 86.80 | 59.49 | 73.15 | 86.33 | 56.63 | 71.48 | 87.85 | 50.64 | 69.25 |
E1–21 | 38.05 | 38.37 | 38.21 | 39.48 | 40.59 | 40.04 | 43.88 | 45.39 | 44.64 | 36.03 | 21.34 | 28.69 |
Kqn | 67.84 | 47.97 | 57.91 | 71.11 | 49.88 | 60.50 | 67.84 | 49.11 | 58.48 | 80.23 | 55.32 | 67.78 |
Z2dk | 80.47 | 71.00 | 75.74 | 81.09 | 68.28 | 74.69 | 82.79 | 71.77 | 77.28 | 50.08 | 47.85 | 48.97 |
Z1bdk | 60.94 | 70.50 | 65.72 | 55.67 | 63.21 | 59.44 | 66.67 | 70.89 | 68.78 | 64.68 | 86.00 | 75.34 |
Z1adk | 67.24 | 63.24 | 65.24 | 70.23 | 60.32 | 65.28 | 67.13 | 63.83 | 65.48 | 50.92 | 64.30 | 57.61 |
J3h | 61.38 | 67.33 | 64.36 | 60.77 | 78.07 | 69.42 | 59.44 | 66.08 | 62.76 | 29.06 | 69.77 | 49.42 |
J1–2 | 70.29 | 95.55 | 82.92 | 70.88 | 88.60 | 79.74 | 69.01 | 92.62 | 80.82 | 60.47 | 87.93 | 74.20 |
Cc3zh | 51.70 | 77.82 | 64.76 | 51.23 | 76.44 | 63.84 | 56.73 | 76.02 | 66.38 | 41.75 | 63.30 | 52.53 |
Cb3zh | 59.84 | 60.32 | 60.08 | 66.98 | 66.14 | 66.56 | 65.56 | 74.28 | 69.92 | 87.14 | 61.69 | 74.42 |
Lithological Classes | Combination Five Datasets (SVM) | Combination Five Datasets (RF) | Optimal Dataset | ||||||
---|---|---|---|---|---|---|---|---|---|
Overall Accuracy: 74.68% Kappa Coefficient: 0.73 | Overall Accuracy: 75.75% Kappa Coefficient: 0.74 | Overall Accuracy: 77.63% Kappa Coefficient: 0.76 | |||||||
Producer’s | User’s | Average | Producer’s | User’s | Average | Producer’s | User’s | Average | |
Qpl4 | 59.26 | 77.97 | 68.62 | 66.39 | 88.03 | 77.21 | 72.33 | 88.52 | 80.43 |
Q3pl | 89.96 | 84.57 | 87.27 | 95.31 | 97.6 | 96.46 | 96.53 | 98.09 | 97.31 |
Q1q | 58.57 | 64.31 | 61.44 | 71.31 | 69.17 | 70.24 | 63.1 | 59.68 | 61.39 |
N2y | 68.05 | 87.32 | 77.69 | 55.86 | 98.78 | 77.32 | 59.31 | 87.46 | 73.39 |
E3g | 84.93 | 65.79 | 75.36 | 86.21 | 60.64 | 73.43 | 85.98 | 64.62 | 75.30 |
E1–21 | 53.75 | 54.46 | 54.11 | 68.25 | 51.57 | 59.91 | 68.85 | 63.00 | 65.93 |
Kqn | 68.42 | 55.77 | 62.10 | 84.44 | 56.99 | 70.72 | 81.05 | 59.74 | 70.40 |
Z2dk | 87.13 | 73.95 | 80.54 | 55.66 | 91.12 | 73.39 | 80.78 | 82.96 | 81.87 |
Z1bdk | 76.96 | 89.16 | 83.06 | 88.54 | 88.75 | 88.65 | 88.07 | 90.94 | 89.51 |
Z1adk | 81.84 | 79.46 | 80.65 | 75.98 | 75.72 | 75.85 | 85.98 | 71.72 | 78.85 |
J3h | 75.18 | 83.47 | 79.33 | 51.94 | 78.43 | 65.19 | 62.23 | 87.86 | 75.05 |
J1–2 | 74.97 | 94.82 | 84.90 | 69.47 | 96.27 | 82.87 | 75.67 | 97.59 | 86.63 |
Cc3zh | 72.75 | 84.51 | 78.63 | 80.35 | 77.19 | 78.77 | 75.67 | 89.24 | 82.46 |
Cb3zh | 93.81 | 68.8 | 81.31 | 95.24 | 84.27 | 89.76 | 77.14 | 73.52 | 75.33 |
Selected Features | |
---|---|
Optimal datasets | (1) MNF2, (2) MNF3, (3) mean of band 1, (4) ICA3, (5) ICA2, (6) mean of band 2, (7) MNF4, (8) IC5, (9) mean of band 9, (10) mean of band3, (11) mean of band 4, (12) mean of band 8, (13) PCA5, (14) mean of band 6, (15) mean of band 7, (16) PC6, (17) mean of band 12, (18) mean of band 5, (19) ICA1, (20) homogeneity of band 7 |
Image Enhancements | PCA | MNF |
---|---|---|
The first three components | 35.68% | 44.57% |
The first five components | 53.54% | 59.60% |
The first seven components | 62.63% | 64.34% |
All components | 64.72% | 65.33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, J.; Jiang, Q.; Liu, H.; Gao, X. Lithological Mapping Research Based on Feature Selection Model of ReliefF-RF. Appl. Sci. 2023, 13, 11225. https://doi.org/10.3390/app132011225
Xi J, Jiang Q, Liu H, Gao X. Lithological Mapping Research Based on Feature Selection Model of ReliefF-RF. Applied Sciences. 2023; 13(20):11225. https://doi.org/10.3390/app132011225
Chicago/Turabian StyleXi, Jing, Qigang Jiang, Huaxin Liu, and Xin Gao. 2023. "Lithological Mapping Research Based on Feature Selection Model of ReliefF-RF" Applied Sciences 13, no. 20: 11225. https://doi.org/10.3390/app132011225
APA StyleXi, J., Jiang, Q., Liu, H., & Gao, X. (2023). Lithological Mapping Research Based on Feature Selection Model of ReliefF-RF. Applied Sciences, 13(20), 11225. https://doi.org/10.3390/app132011225