Performance, Emotion, Presence: Investigation of an Augmented Reality-Supported Concept for Flight Training
Abstract
:1. Introduction
1.1. Augmented Reality (AR) Support for Pilot Education
1.2. Issues with the Approach and Landing of an Aircraft
1.3. Applications of AR in Education
1.4. Aspects of Gender Diversity
1.5. Research Question
2. Materials and Methods
2.1. Participants
2.2. Equipment
2.2.1. AR Headsets
2.2.2. Flight Simulator
2.3. AR System
2.4. Procedure
2.5. Dependent Measures
- Engagement = Attraction + Time investment + Usability;
- Engrossment = Emotional attachment + Focus of attention;
- Total immersion = Presence + Flow.
2.6. Independent Variables
2.7. Data Analysis
3. Results
3.1. Training Effects
3.2. Analysis of the Specific AR Training
3.3. Gender Effects
3.4. Correlations between Performance and Subjective Measures
4. Discussion
4.1. Effects of the Flight Training
4.2. The Relationship between Performance and Subjective Variables
4.3. Trainees’ Interaction with the AR Application
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMSL | above mean sea level |
AOPA | Aircraft Owner and Pilot Association |
AR | augmented reality |
CG | control group |
EG | experimental group |
FPV | flight path vector |
TCP | transmission control protocol |
UDP | user datagram protocol |
VFR | visual flight rules |
References
- Woods, B. How Airlines Plan to Create a New Generation of Pilots Amid Fears of Decade-Long Cockpit Crisis. 2022. Available online: https://www.cnbc.com/2022/11/11/how-airlines-plan-to-create-new-generation-of-pilots-at-time-of-crisis.html (accessed on 16 November 2022).
- Mitchell, J.; Kristovics, A.; Vermeulen, L.; Wilson, J.; Martinussen, M. How Pink is the Sky? A Cross-national Study of the Gendered Occupation of Pilot. Employ. Relat. Rec. 2005, 5, 43–60. [Google Scholar]
- Hamilton, P. The Teaching Women to Fly Research Project. In Absent Aviators, Gender Issues in Aviation; Bridges, D., Neal-Smith, J., Mills, A., Eds.; Ashgate Publishing, Ltd.: Surrey, UK, 2014; pp. 313–331. [Google Scholar]
- Koglbauer, I.; Braunstingl, R. Ab initio pilot training for traffic separation and visual airport procedures in a naturalistic flight simulation environment. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 1–10. [Google Scholar] [CrossRef]
- Sitler, R. Gender differences in learning to fly. In Tapping Diverse Talents in Aviation: Culture, Gender, and Diversity; Turney, M.A., Ed.; Ashgate: Aldershot, UK, 2004; pp. 77–90. [Google Scholar]
- Turney, M.A.; Bishop, J.C.; Karp, M.R.; Niemczyk, M.; Sitler, R.L.; Green, M.F. National survey results: Retention of women in collegiate aviation. J. Air Transp. 2002, 7, 1–24. [Google Scholar]
- Turney, M.; Henley, I.; Niemczyk, M.; McCurry, W. Inclusive versus exclusive strategies in aviation training. In Tapping Diverse Talents in Aviation: Culture, Gender, and Diversity; Turney, M.A., Ed.; Ashgate: Aldershot, UK, 2004; pp. 185–196. [Google Scholar]
- Brown, L. The Next Generation Classroom: Transforming Aviation Training with Augmented Reality. In Proceedings of the 2017: Training Pilots of the Future–Techniques & Technology, Daytona Beach, FL, USA, 14–16 August 2017. [Google Scholar]
- Moesl, B.; Schaffernak, H.; Vorraber, W.; Braunstingl, R.; Herrele, T.; Koglbauer, I.V. A Research Agenda for Implementing Augmented Reality in Ab Initio Pilot Training. Aviat. Psychol. Appl. Hum. Factors 2021, 11, 118–126. [Google Scholar] [CrossRef]
- Moesl, B.; Schaffernak, H.; Vorraber, W.; Holy, M.; Herrele, T.; Braunstingl, R.; Koglbauer, I.V. Towards a More Socially Sustainable Advanced Pilot Training by Integrating Wearable Augmented Reality Devices. Sustainability 2022, 14, 2220. [Google Scholar] [CrossRef]
- Schaffernak, H.; Moesl, B.; Vorraber, W.; Koglbauer, I.V. Potential Augmented Reality Application Areas for Pilot Education: An Exploratory Study. Educ. Sci. 2020, 10, 86. [Google Scholar] [CrossRef]
- Schaffernak, H.; Moesl, B.; Vorraber, W.; Braunstingl, R.; Herrele, T.; Koglbauer, I. Design and Evaluation of an Augmented Reality Application for Landing Training. In Human Interaction, Emerging Technologies and Future Applications IV; Ahram, T., Taiar, R., Groff, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 1378, pp. 107–114. [Google Scholar] [CrossRef]
- Moesl, B.; Schaffernak, H.; Vorraber, W.; Braunstingl, R.; Koglbauer, I.V. Multimodal Augmented Reality Applications for Training of Traffic Procedures in Aviation. Multimodal Technol. Interact. 2023, 7, 3. [Google Scholar] [CrossRef]
- Air Safety Institute. Mastering Takeoffs & Landings; Air Safety Institute: Frederick, MD, USA, 2008. [Google Scholar]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 2017, 143, 05016009. [Google Scholar] [CrossRef]
- Garzón, J. An Overview of Twenty-Five Years of Augmented Reality in Education. Multimodal Technol. Interact. 2021, 5, 37. [Google Scholar] [CrossRef]
- Bressler, D.; Bodzin, A. A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. J. Comput. Assist. Learn. 2013, 29, 505–517. [Google Scholar] [CrossRef]
- Dede, C. Immersive Interfaces for Engagement and Learning. Science 2009, 323, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, Y.; Kyza, E.A. The development and validation of the ARI questionnaire: An instrument for measuring immersion in location-based augmented reality settings. Int. J. Hum.-Comput. Stud. 2017, 98, 24–37. [Google Scholar] [CrossRef]
- American Psychological Association. APA Dictionary of Psychology; American Psychological Association: Washington, DC, USA, 2023. [Google Scholar]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper & Row New York: New York, NY, USA, 1990. [Google Scholar]
- Cross, J.I.; Boag-Hodgson, C.C.; Mavin, T.J. Measuring Presence and Situation Awareness in a Virtual Reality Flight Simulator. Aviat. Psychol. Appl. Hum. Factors 2023, 2. [Google Scholar] [CrossRef]
- Witmer, B.G.; Singer, M.J. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence Teleoperators Virtual Environ. 1998, 7, 225–240. [Google Scholar] [CrossRef]
- Eccles, D.W.; Ward, P.; Woodman, T.; Janelle, C.M.; Scanff, C.L.; Ehrlinger, J.; Castanier, C.; Coombes, S.A. Where’s the Emotion? How Sport Psychology Can Inform Research on Emotion in Human Factors. Hum. Factors 2011, 53, 180–202. [Google Scholar] [CrossRef]
- Braunstingl, R.; Baciu, C.; Koglbauer, I. Learning Style, Motivation, Emotional State and Workload of High Performers. In Proceedings of the ERD 2018 Social & Behavioural Sciences, Cluj-Napoca, Romania, 6–7 July 2019; pp. 374–381. [Google Scholar] [CrossRef]
- Bauer, S.; Braunstingl, R.; Riesel, M.; Koglbauer, I. Improving the method for upset recovery training of ab initio student pilots in simulated and real flight. In Proceedings of the 33rd Conference of the European Association for Aviation Psychology, Dubrovnik, Croatia, 24–28 September 201; pp. 167–179.
- Koglbauer, I. Evaluation Of A Coaching Program With Ab Initio Student Pilots. In Proceedings of the ERD 2017 Social & Behavioural Sciences, Cluj-Napoca, Romania, 7–8 July 2017; Future Academy: Vancouver, BC, Canada, 2018; pp. 663–669. [Google Scholar] [CrossRef]
- Neubauer, A.C.; Grabner, R.H.; Fink, A.; Neuper, C. Intelligence and neural efficiency: Further evidence of the influence of task content and sex on the brain–IQ relationship. Cogn. Brain Res. 2005, 25, 217–225. [Google Scholar] [CrossRef] [PubMed]
- DeLucia, P.R. Perception of Collision. In The Cambridge Handbook of Applied Perception Research; Hoffman, R.R., Hancock, P.A., Scerbo, M.W., Parasuraman, R., Szalma, J.L., Eds.; Cambridge University Press: New York, NY, USA, 2015; pp. 568–591. [Google Scholar] [CrossRef]
- Koglbauer, I. Gender differences in time perception. In The Cambridge Handbook of Applied Perception Research; Hoffman, R.R., Hancock, P.A., Scerbo, M.W., Parasuraman, R., Szalma, J.L., Eds.; Cambridge University Press: New York, NY, USA, 2015; pp. 1004–1028. [Google Scholar]
- Koglbauer, I. Simulator Training Improves the Estimation of Collision Parameters and the Performance of Student Pilots. Procedia-Soc. Behav. Sci. 2015, 209, 261–267. [Google Scholar] [CrossRef]
- Wickens, C.D.; Long, J. Object versus space-based models of visual attention: Implications for the design of head-up displays. J. Exp. Psychol. Appl. 1995, 1, 179–193. [Google Scholar] [CrossRef]
- Goteman, Ö.; Smith, K.; Dekker, S. HUD With a Velocity (Flight-Path) Vector Reduces Lateral Error During Landing in Restricted Visibility. Int. J. Aviat. Psychol. 2007, 17, 91–108. [Google Scholar] [CrossRef]
- Fitts, P.M.; Posner, M.I. Human Performance; Brooks/Cole: Belmont, CA, USA, 1967. [Google Scholar]
- Microsoft. Hololens Hardware, 1st ed.; Microsoft: Redmond, WA, USA, 2021. [Google Scholar]
- Frohmann, P. Utilization of Augmented Reality in Aviation—Assisting Small Aircraft Pilots in Approaching and Landing. Master’s Thesis, Graz University of Technology, Graz, Austria, 2019. [Google Scholar]
- Leedy, P.D.; Ormrod, J.E.; Johnson, L.R. Practical Research: Planning and Design; Pearson Education: London, UK, 2015; Volume 11. [Google Scholar]
- Taylor, R. Situation Awareness Rating Technique (SART): The development of a tool for aircrew systems design. In Proceedings of the Situation Awareness in Aerospace Operations (AGARD-CP-478); NATO-AGARD, Ed.; Routledge: London, UK, 1990; pp. 3.1–3.17. [Google Scholar]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Human Mental Workload; Advances in Psychology; Hancock, P.A., Meshkati, N., Eds.; APA: Washington, DC, USA, 1988; Volume 52, pp. 139–183. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Rheinberg, F.; Vollmeyer, R.; Burns, B.D. QCM: A questionnaire to assess current motivation in learning situations. Diagnostica 2001, 47, 57–66. [Google Scholar] [CrossRef]
- Stevens, J.P. Intermediate Statistics. A Modern Approach; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1999; Volume 2. [Google Scholar]
- Weissgerber, T.; Milic, N.; Winham, S.; Garovic, V. Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol. 2015, 13, e1002128. [Google Scholar] [CrossRef] [PubMed]
- Vollmeyer, R.; Rheinberg, F. Motivation and metacognition when learning a complex system. Eur. J. Psychol. Educ. 1999, 14, 541–554. [Google Scholar] [CrossRef]
- Vollmeyer, R.; Rheinberg, F. Does motivation affect performance via persistence? Learn. Instr. 2000, 10, 293–309. [Google Scholar] [CrossRef]
- Boucsein, W.; Koglbauer, I.; Braunstingl, R.; Kallus, K.W. The Use of Psychophysiological Measures During Complex Flight Manoeuvres—An Expert Pilot Study. In Sensing Emotions: The Impact of Context on Experience Measurements; Westerink, J., Krans, M., Ouwerkerk, M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 53–63. [Google Scholar] [CrossRef]
- Brown, E.; Cairns, P. A Grounded Investigation of Game Immersion. In Proceedings of the CHI ’04 Extended Abstracts on Human Factors in Computing Systems, Vienna, Austria, 24–29 April 2004; pp. 1297–1300. [Google Scholar] [CrossRef]
- Ermi, L.; Mäyrä, F. Fundamental Components of the Gameplay Experience: Analysing Immersion. In Proceedings of the Digital Games Research Conference 2005, Changing Views: Worlds in Play, Vancouver, BC, Canada, 16–20 June 2005; pp. 1–14. [Google Scholar]
Phase | Content | Experimental Group | Control Group |
---|---|---|---|
Introduction | Briefing | written instructions | |
Familiarization | with simulator | ||
Pre-test (three scenarios) | Approach maneuvers | in the simulator without AR | |
Training 1 | Familiarization | with HoloLens and the AR application | — |
(12 scenarios) | Approach training in the simulator | six with AR and six without AR | 12 without AR |
Self-evaluation and feedback | with AR | with pen and paper | |
Break | |||
Training 2 | Approach training in the simulator | six with AR and six without AR | 12 without AR |
(12 scenarios) | Self evaluation and feedback | with AR | with pen and paper |
Post-test (three scenarios) | Approach maneuvers | in the simulator without AR |
Test | Pretest | Posttest | ||
---|---|---|---|---|
Variable | Mean | SE | Mean | SE |
Performance | ||||
Objective deviation * | 7.71 | 0.22 | 4.24 | 0.31 |
Deviation self-assessment * | 7.98 | 0.23 | 9.15 | 0.25 |
Approach quality * | 158.79 | 11.47 | 261.86 | 9.22 |
Situation awareness SART | ||||
Understanding * | 12.62 | 0.39 | 14.35 | 0.46 |
Demands | 10.48 | 0.42 | 10.63 | 0.49 |
Supply | 20.59 | 0.39 | 20.35 | 0.51 |
Total SA score | 22.72 | 0.83 | 24.07 | 0.93 |
Workload NASA-TLX | ||||
Workload | 10.83 | 0.66 | 10.02 | 0.6 |
PANAS | ||||
Positive Emotion | 36.33 | 0.75 | 35.49 | 0.97 |
Negative Emotion * | 15.37 | 0.66 | 12.09 | 0.41 |
Motivation | ||||
Challenge * | 17.87 | 0.46 | 16.57 | 0.53 |
Interest | 24.47 | 0.45 | 24.16 | 0.55 |
Success probability | 8.56 | 0.22 | 8.34 | 0.25 |
Fear of failure * | 10.07 | 0.54 | 7.61 | 0.32 |
Variable | Group | Pretest | Posttest | ||
---|---|---|---|---|---|
Mean | SE | Mean | SE | ||
Performance | |||||
Objective deviation | EG | 7.57 | 0.33 | 4.55 | 0.46 |
CG | 7.84 | 0.29 | 3.94 | 0.41 | |
Deviation self-assessment | EG | 8.17 | 0.34 | 9.01 | 0.37 |
CG | 7.78 | 0.30 | 9.29 | 0.33 | |
Approach quality | EG | 149.78 | 17.11 | 250.37 | 13.76 |
CG | 167.89 | 15.28 | 273.35 | 12.29 | |
Situation awareness SART | |||||
Understanding | EG | 12.75 | 0.55 | 14.29 | 0.66 |
CG | 12.49 | 0.54 | 14.42 | 0.63 | |
Demands | EG | 10.89 | 0.60 | 11.25 | 0.71 |
CG | 10.08 | 0.58 | 10.00 | 0.69 | |
Supply | EG | 20.29 | 0.56 | 19.79 | 0.73 |
CG | 20.89 | 0.55 | 20.91 | 0.71 | |
Total SA score | EG | 22.14 | 1.19 | 22.82 | 1.34 |
CG | 23.30 | 1.15 | 25.33 | 1.29 | |
Workload NASA-TLX | |||||
Workload | EG | 11.32 | 0.95 | 9.79 | 0.86 |
CG | 10.34 | 0.92 | 10.25 | 0.83 | |
PANAS | |||||
Positive Emotion | EG | 36.89 | 1.08 | 35.43 | 1.40 |
CG | 35.77 | 1.05 | 35.56 | 1.35 | |
Negative Emotion | EG | 15.93 | 0.95 | 12.96 | 0.59 |
CG | 14.81 | 0.92 | 11.21 | 0.57 | |
Motivation | |||||
Challenge | EG | 18.11 | 0.67 | 16.79 | 0.76 |
CG | 17.63 | 0.64 | 16.36 | 0.74 | |
Interest | EG | 25.18 | 0.65 | 24.25 | 0.78 |
CG | 23.76 | 0.63 | 24.08 | 0.76 | |
Success probability | EG | 8.79 | 0.32 | 8.18 | 0.35 |
CG | 8.34 | 0.31 | 8.51 | 0.34 | |
Fear of failure | EG | 10.96 | 0.77 | 8.21 | 0.47 |
CG | 9.18 | 0.75 | 7.01 | 0.45 |
Variable | Women | Men | ||
---|---|---|---|---|
Mean | SE | Mean | SE | |
AR immersion | ||||
Attraction | 13.25 | 0.65 | 12.17 | 0.65 |
Time investment | 12.67 | 0.64 | 12.00 | 0.64 |
Usability | 6.00 | 1.24 | 6.50 | 1.24 |
Emotional attachment | 13.33 | 1.15 | 12.25 | 1.15 |
Focus of attention | 17.33 | 0.88 | 17.08 | 0.88 |
Presence | 12.58 | 1.35 | 14.33 | 1.35 |
Flow | 17.83 | 0.98 | 16.17 | 0.98 |
Engagement | 31.92 | 2.29 | 30.67 | 2.29 |
Engrossment | 30.67 | 1.67 | 29.33 | 1.67 |
Total immersion | 30.42 | 1.84 | 30.50 | 1.84 |
AR features and interactions | ||||
AR comfort | 2.50 | 0.37 | 3.00 | 0.37 |
AR trust | 2.35 | 0.34 | 2.92 | 0.34 |
Gesture interaction | 3.25 | 0.36 | 3.25 | 0.36 |
Voice interaction | 0.92 | 0.36 | 0.08 | 0.36 |
Quiz | 3.67 | 0.43 | 3.00 | 0.43 |
Holograms | 3.08 | 0.50 | 3.58 | 0.50 |
AR projection field | 3.42 | 0.39 | 3.58 | 0.39 |
Variable | Landing Deviation | Self-Assessment | Approach Quality | ||||||
---|---|---|---|---|---|---|---|---|---|
Statistical Test | r | p | N | r | p | N | r | p | N |
Situation awareness SART | |||||||||
Understanding | 0.154 * | 0.02 | 57 | −0.078 | 0.28 | 57 | 0.154 | 0.13 | 55 |
Demands | 0.249 * | 0.03 | 57 | −0.098 | 0.23 | 57 | −0.249 * | 0.03 | 55 |
Supply | −0.153 | 0.13 | 57 | −0.181 | 0.09 | 57 | 0.136 | 0.16 | 55 |
Total SA score | −0.338 * | 0.01 | 57 | −0.073 | 0.30 | 57 | 0.275 * | 0.02 | 55 |
Workload NASA-TLX | |||||||||
Workload | 0.227 * | 0.05 | 57 | 0.014 | 0.46 | 57 | −0.239 * | 0.04 | 55 |
PANAS | |||||||||
Positive Emotion | −0.186 | 0.08 | 57 | −0.088 | 0.26 | 57 | 0.196 | 0.08 | 55 |
Negative Emotion | 0.206 | 0.06 | 57 | −0.059 | 0.33 | 57 | −0.466 * | 0.01 | 55 |
Motivation | |||||||||
Challenge | 0.060 | 0.33 | 57 | −0.106 | 0.22 | 57 | 0.076 | 0.29 | 55 |
Interest | −0.033 | 0.41 | 57 | −0.158 | 0.12 | 57 | 0.079 | 0.28 | 55 |
Success probability | −0.284 * | 0.02 | 57 | 0.083 | 0.27 | 57 | 0.306 * | 0.01 | 55 |
Fear of failure | 0.241 * | 0.04 | 57 | −0.156 | 0.12 | 57 | −0.366 * | 0.01 | 55 |
AR immersion | |||||||||
Attraction | 0.076 | 0.35 | 28 | −0.255 | 0.10 | 28 | −0.200 | 0.17 | 26 |
Time investment | 0.080 | 0.34 | 28 | −0.222 | 0.13 | 28 | −0.130 | 0.26 | 26 |
Usability | −0.228 | 0.12 | 28 | 0.135 | 0.25 | 28 | 0.154 | 0.23 | 26 |
Emotional attachment | −0.104 | 0.30 | 28 | −0.050 | 0.40 | 28 | −0.030 | 0.45 | 26 |
Focus of attention | 0.061 | 0.38 | 28 | −0.483 * | 0.01 | 28 | −0.100 | 0.32 | 26 |
Presence | −0.367 * | 0.03 | 28 | 0.031 | 0.44 | 28 | 0.078 | 0.35 | 26 |
Flow | 0.193 | 0.16 | 28 | −0.328 * | 0.04 | 28 | −0.040 | 0.43 | 26 |
Engagement | −0.08 | 0.34 | 28 | −0.063 | 0.38 | 28 | −0.010 | 0.48 | 26 |
Engrossment | −0.028 | 0.44 | 28 | −0.315 * | 0.05 | 28 | −0.070 | 0.36 | 26 |
Total Immersion | −0.163 | 0.20 | 28 | −0.158 | 0.21 | 28 | 0.036 | 0.43 | 26 |
AR Features | |||||||||
Comfort | −0.441 * | 0.01 | 28 | 0.086 | 0.33 | 28 | 0.378 * | 0.03 | 26 |
Trust | −0.125 | 0.26 | 28 | −0.032 | 0.44 | 28 | −0.160 | 0.22 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moesl, B.; Schaffernak, H.; Vorraber, W.; Braunstingl, R.; Koglbauer, I.V. Performance, Emotion, Presence: Investigation of an Augmented Reality-Supported Concept for Flight Training. Appl. Sci. 2023, 13, 11346. https://doi.org/10.3390/app132011346
Moesl B, Schaffernak H, Vorraber W, Braunstingl R, Koglbauer IV. Performance, Emotion, Presence: Investigation of an Augmented Reality-Supported Concept for Flight Training. Applied Sciences. 2023; 13(20):11346. https://doi.org/10.3390/app132011346
Chicago/Turabian StyleMoesl, Birgit, Harald Schaffernak, Wolfgang Vorraber, Reinhard Braunstingl, and Ioana Victoria Koglbauer. 2023. "Performance, Emotion, Presence: Investigation of an Augmented Reality-Supported Concept for Flight Training" Applied Sciences 13, no. 20: 11346. https://doi.org/10.3390/app132011346
APA StyleMoesl, B., Schaffernak, H., Vorraber, W., Braunstingl, R., & Koglbauer, I. V. (2023). Performance, Emotion, Presence: Investigation of an Augmented Reality-Supported Concept for Flight Training. Applied Sciences, 13(20), 11346. https://doi.org/10.3390/app132011346