Characterization of Asphalt Binders Modified with Bio-Binder from Swine Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reference Asphalt Binders
2.1.2. Bio-Binder Production
2.1.3. Preparation of Bio-Modified Asphalt Binder
2.2. Methodology
2.2.1. Penetration Test
2.2.2. Ring-and-Ball Test
2.2.3. Fraass Test
2.2.4. Viscosity Test
2.2.5. Cleveland Open Cup Test (Flash Point)
2.2.6. UCL Test
2.2.7. Leaching Test
3. Results
3.1. Penetration Test
3.2. Ring-and-Ball Test
3.3. Fraass Test
3.4. Viscosity Test
3.5. Cleveland Open Cup Test (Flash Point)
3.6. UCL Test
3.6.1. Thermal Susceptibility
3.6.2. Adhesiveness
3.6.3. Ageing Resistance
3.7. Leaching Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, B.; Yang, F.; Fu, J.; Wang, K.; Liu, F. Evaluation of Energy Consumption of Typical Asphalt Pavement Structure. IOP Conf. Ser. Earth Environ. Sci. 2021, 804, 042057. [Google Scholar] [CrossRef]
- Bizarro, D.E.G.; Steinmann, Z.; Nieuwenhuijse, I.; Keijzer, E.; Hauck, M. Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: Lca Methodology, Best Available Technology, and near-Future Reduction Potential. Sustainability 2021, 13, 1382. [Google Scholar] [CrossRef]
- López-Montero, T.; Miró, R.; Martínez, A. Effect of the Use of Marpol Waste as a Partial Replacement of the Binder for the Manufacture of More Sustainable Bituminous Mixtures. Int. J. Pavement Eng. 2022, 1–15. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Canestrari, F. Renewable Materials in Bituminous Binders and Mixtures: Speculative Pretext or Reliable Opportunity? Resour. Conserv. Recycl. 2019, 144, 209–222. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Z.; Chen, X.; Mohd Hasan, M.R. Preparation Process of Bio-Oil and Bio-Asphalt, Their Performance, and the Application of Bio-Asphalt: A Comprehensive Review. J. Traffic Transp. Eng. 2020, 7, 137–151. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; You, Z.; Mohd Hasan, M.R. Research on Properties of Bio-Asphalt Binders Based on Time and Frequency Sweep Test. Constr. Build. Mater. 2018, 160, 786–793. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Canestrari, F. Chemical, Morphological and Rheological Characterization of Bitumen Partially Replaced with Wood Bio-Oil: Towards More Sustainable Materials in Road Pavements. J. Traffic Transp. Eng. 2020, 7, 192–204. [Google Scholar] [CrossRef]
- Su, N.; Xiao, F.; Wang, J.; Cong, L.; Amirkhanian, S. Productions and Applications of Bio-Asphalts—A Review. Constr. Build. Mater. 2018, 183, 578–591. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, M.; You, L.; Wu, S.; Ji, H. Performance and Optimization of Castor Beans-Based Bio-Asphalt and European Rock-Asphalt Modified Asphalt Binder. Constr. Build. Mater. 2020, 240, 117951. [Google Scholar] [CrossRef]
- Agència de Residus de Catalunya Excedentes de Deyecciones Ganaderas. Available online: https://residus.gencat.cat/es/ambits_dactuacio/tipus_de_residu/dejeccions_ramaderes/ (accessed on 14 September 2023).
- Zeng, Y.; He, K.; Zhang, J.; Li, P. Adoption and Ex-Post Impacts of Sustainable Manure Management Practices on Income and Happiness: Evidence from Swine Breeding Farmers in Rural Hubei, China. Ecol. Econ. 2023, 208, 107809. [Google Scholar] [CrossRef]
- Mahssin, Z.Y.; Zainol, M.M.; Hassan, N.A.; Yaacob, H.; Puteh, M.H.; Saidina Amin, N.A. Hydrothermal Liquefaction Bioproduct of Food Waste Conversion as an Alternative Composite of Asphalt Binder. J. Clean. Prod. 2021, 282, 125422. [Google Scholar] [CrossRef]
- Tekin, K.; Karagöz, S.; Bektaş, S. A Review of Hydrothermal Biomass Processing. Renew. Sustain. Energy Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Ong, H.C.; Chen, W.H.; Farooq, A.; Gan, Y.Y.; Lee, K.T.; Ashokkumar, V. Catalytic Thermochemical Conversion of Biomass for Biofuel Production: A Comprehensive Review. Renew. Sustain. Energy Rev. 2019, 113, 109266. [Google Scholar] [CrossRef]
- Karnati, S.R.; Oldham, D.; Fini, E.H.; Zhang, L. Surface Functionalization of Silica Nanoparticles with Swine Manure-Derived Bio-Binder to Enhance Bitumen Performance in Road Pavement. Constr. Build. Mater. 2021, 266, 121000. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Bitumen Improvement with Bio-Oil and Natural or Organomodified Montmorillonite: Structure, Rheology, and Adhesion of Composite Asphalt Binders. Constr. Build. Mater. 2023, 364, 129919. [Google Scholar] [CrossRef]
- Audo, M.; Paraschiv, M.; Queffélec, C.; Louvet, I.; Hémez, J.; Fayon, F.; Lépine, O.; Legrand, J.; Tazerout, M.; Chailleux, E.; et al. Subcritical Hydrothermal Liquefaction of Microalgae Residues as a Green Route to Alternative Road Binders. ACS Sustain. Chem. Eng. 2015, 3, 583–590. [Google Scholar] [CrossRef]
- Abo-Shanab, Z.L.; Ragab, A.A.; Naguib, H.M. Improved Dynamic Mechanical Properties of Sustainable Bio-Modified Asphalt Using Agriculture Waste. Int. J. Pavement Eng. 2021, 22, 905–911. [Google Scholar] [CrossRef]
- Sun, D.; Lu, T.; Xiao, F.; Zhu, X.; Sun, G. Formulation and Aging Resistance of Modified Bio-Asphalt Containing High Percentage of Waste Cooking Oil Residues. J. Clean. Prod. 2017, 161, 1203–1214. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Napiah, M.B.; Sutanto, M.H.; Alaloul, W.S.; Yusoff, N.I.M.; Khairuddin, F.H.; Memon, A.M. Evaluation of the High-Temperature Rheological Performance of Tire Pyrolysis Oil-Modified Bio-Asphalt. Int. J. Pavement Eng. 2021, 23, 4007–4022. [Google Scholar] [CrossRef]
- Borghol, I.; Queffélec, C.; Bolle, P.; Descamps, J.; Lombard, C.; Lépine, O.; Kucma, D.; Lorentz, C.; Laurenti, D.; Montouillout, V.; et al. Biosourced Analogs of Elastomer-Containing Bitumen through Hydrothermal Liquefaction of: Spirulina Sp. Microalgae Residues. Green Chem. 2018, 20, 2337–2344. [Google Scholar] [CrossRef]
- López-Montero, T.; Miró, R. Ageing and Temperature Effect on the Fatigue Performance of Bituminous Mixtures. Mater. Constr. 2017, 67, e126. [Google Scholar] [CrossRef]
- Zhang, R.; Sias, J.E.; Dave, E.V. Evaluation of the Cracking and Aging Susceptibility of Asphalt Mixtures Using Viscoelastic Properties and Master Curve Parameters. J. Traffic Transp. Eng. 2022, 9, 106–119. [Google Scholar] [CrossRef]
- Yang, S.L.; Baek, C.; Park, H.B. Effect of Aging and Moisture Damage on Fatigue Cracking Properties in Asphalt Mixtures. Appl. Sci. 2021, 11, 10543. [Google Scholar] [CrossRef]
- Casado-Barrasa, R.; López-Montero, T.; Castro-Fresno, D.; Miró, R. Evaluation of the Rejuvenation of Asphalt by Means of Oil-Saturated Porous Aggregates. Constr. Build. Mater. 2022, 318, 125825. [Google Scholar] [CrossRef]
- Nayak, P.; Sahoo, U.C. A Rheological Study on Aged Binder Rejuvenated with Pongamia Oil and Composite Castor Oil. Int. J. Pavement Eng. 2017, 18, 595–607. [Google Scholar] [CrossRef]
- Oldham, D.; Rajib, A.; Dandamudi, K.P.R.; Liu, Y.; Deng, S.; Fini, E.H. Transesterification of Waste Cooking Oil to Produce A Sustainable Rejuvenator for Aged Asphalt. Resour. Conserv. Recycl. 2021, 168, 105297. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.; Pang, Q.; Sun, G.; Hu, M.; Lu, T. Potential of Recycled Concrete Aggregate Pretreated with Waste Cooking Oil Residue for Hot Mix Asphalt. J. Clean. Prod. 2019, 221, 469–479. [Google Scholar] [CrossRef]
- Ziari, H.; Ayar, P.; Amjadian, Y. Laboratory Evaluation of Short- and Long-Term Aging Resistance of Rejuvenated RAP Mixtures. J. Mater. Civ. Eng. 2023, 35, 04023428. [Google Scholar] [CrossRef]
- Ghabchi, R.; Pereira Castro, M.P. Characterisation of a Hybrid Plant-Based Asphalt Binder Replacement with High Reactive Phenolic Monomer Content. Int. J. Pavement Eng. 2021, 23, 4675–4696. [Google Scholar] [CrossRef]
- Crucho, J.M.L.; Neves, J.; Capitão, S.D.; Picado-Santos, L.G. Mechanical Performance of Asphalt Concrete Modified with Nanoparticles: Nanosilica, Zero-Valent Iron and Nanoclay. Constr. Build. Mater. 2018, 181, 309–318. [Google Scholar] [CrossRef]
- Tayh, S.A.; Muniandy, R.; Hassim, S.; Jakarni, F.; Aburkaba, E. An Overview of Utilization of Bio-Oil in Hot Mix Asphalt. WALIA J. 2014, 30, 131–141. [Google Scholar]
- Abdel Raouf, M. Development of Non-Petroleum Binders Derived from Fast Pyrolysis Bio-Oils for Use in Flexible Pavements; Iowa State University: Ames, IA, USA, 2010; ISBN 2013206534. [Google Scholar]
- Samieadel, A.; Schimmel, K.; Fini, E.H. Comparative Life Cycle Assessment (LCA) of Bio-Modified Binder and Conventional Asphalt Binder. Clean Technol. Environ. Policy 2018, 20, 191–200. [Google Scholar] [CrossRef]
- Wang, H.; Jing, Y.; Zhang, J.; Cao, Y.; Lyu, L. Preparation and Performance Evaluation of Swine Manure Bio-Oil Modified Rubber Asphalt Binder. Constr. Build. Mater. 2021, 294, 123584. [Google Scholar] [CrossRef]
- Islam, M.N.; Park, J.H. A Short Review on Hydrothermal Liquefaction of Livestock Manure and a Chance for Korea to Advance Swine Manure to Bio-Oil Technology. J. Mater. Cycles Waste Manag. 2018, 20, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Fan, S.; Shi, S.; Zhang, Z.; Oeser, M. Feasibility Analysis of Bio-Binder as Non-Petroleum Alternative for Bituminous Materials. Mater. Res. Express 2020, 6, 125115. [Google Scholar] [CrossRef]
- Fini, E.H.; Hosseinnezhad, S.; Oldham, D.; Mclaughlin, Z.; Alavi, Z.; Harvey, J. Bio-Modification of Rubberised Asphalt Binder to Enhance Its Performance. Int. J. Pavement Eng. 2019, 20, 1216–1225. [Google Scholar] [CrossRef]
- Oldham, D.J.; Fini, E.H. A Bottom-up Approach to Study the Moisture Susceptibility of Bio-Modified Asphalt. Constr. Build. Mater. 2020, 265, 120289. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The Circular Bioeconomy: Its Elements and Role in European Bioeconomy Clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- EN 1426:2015; Bitumen and Bituminous Binders. Determination of Needle Penetration. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 1427:2015; Bitumen and Bituminous Binders. Determination of the Siftening Point. Ring and Ball Method. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 12593:2015; Bitumen and Bituminous Binders. Determination of the Fraass Breaking Point. European Committee for Standardization: Brussels, Belgium, 2015.
- EN ISO 2592:2017; Petroleum and Related Products. Determination of Flash and Fire Points. Cleveland open cup method (ISO 2592:2017). European Committee for Standardization: Brussels, Belgium, 2017.
- EN 12592:2014; Bitumen and Bituminous Binders. Determination of Solubility. European Committee for Standardization: Brussels, Belgium, 2014.
- EN 12607-1:2014; Bitumen and Bituminous Binders. Determination of the Resistance to Hardening under Influence of Heat and Air. Part 1: RTFOT Method. European Committee for Standardization: Brussels, Belgium, 2014.
- EN 13302:2018; Bitumen and Bituminous Binders. Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus. European Committee for Standardization: Brussels, Belgium, 2018.
- López-Montero, T.; Maldonado-Alameda, A.; Mañosa, J.; Miró, R.; Chimenos, J.M. Analysing the Potential Use of a Low-Grade Magnesium Carbonate by-Product as a Filler in Hot Asphalt Mixtures. Int. J. Pavement Eng. 2022, 1–12. [Google Scholar] [CrossRef]
- Pérez-Jiménez, F.; Miró Recasens, R. Characterization Procedure of Asphalt Binders with the Cántabro Test. UCL Method. In Proceedings of the Summaries and Papers, 5th Eurobitume Congress, Stockholm, Sweden, 16–16 June 1993; pp. 209–213. [Google Scholar]
- EN 12697-17:2018; Bituminous Mixtures. Test Methods. Part 17: Particle Loss of Porous Asphalt Specimens. European Committee for Standardization: Brussels, Belgium, 2017.
- De la Roche, C.; Van de Ven, M.; Van den Bergh, W.; Gabet, T.; Dubois, V.; Grenfell, J.; Porot, L. Development of a Laboratory Bituminous Mixtures Ageing Protocol. In Advanced Testing and Characterization of Bituminous Materials; CRC Press: Boca Raton, FL, USA, 2009; pp. 331–346. [Google Scholar]
- EN 12457-4:2002; Characterization of Waste. Leaching. Compliance Test for Leaching of Granular Waste Materials and Sludges. Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10l/kg for Materials with Particle Size below 10 mm (without or with Size Reduction). European Committee for Standardization: Brussels, Belgium, 2002.
- EN ISO 17294-2:2016; Water Quality. Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Part 2: Determination of Selected Elements Including Uranium Isotopes (ISO 17294-2:2016). European Committee for Standardization: Brussels, Belgium, 2016.
- EN ISO 17852:2008; Water Quality. Determination of Mercury. Method Using Atomic Fluorescence Spectrometry (ISO 17852:2006). European Committee for Standardization: Brussels, Belgium, 2008.
- Oldham, D.J.; Fini, E.H.; Chailleux, E. Application of a Bio-Binder as a Rejuvenator for Wet Processed Asphalt Shingles in Pavement Construction. Constr. Build. Mater. 2015, 86, 75–84. [Google Scholar] [CrossRef]
- Fini, E.H.; Kalberer, E.W.; Shahbazi, A.; Basti, M.; You, Z.; Ozer, H.; Aurangzeb, Q. Chemical Characterization of Biobinder from Swine Manure: Sustainable Modifier for Asphalt Binder. J. Mater. Civ. Eng. 2011, 23, 1506–1513. [Google Scholar] [CrossRef]
- Fini, E.H.; Al-Qadi, I.L.; You, Z.; Zada, B.; Mills-Beale, J. Partial Replacement of Asphalt Binder with Bio-Binder: Characterisation and Modification. Int. J. Pavement Eng. 2012, 13, 515–522. [Google Scholar] [CrossRef]
- Fini, E.H.; Oldham, D.J.; Abu-Lebdeh, T. Synthesis and Characterization of Biomodified Rubber Asphalt: Sustainable Waste Management Solution for Scrap Tire and Swine Manure. J. Environ. Eng. 2013, 139, 1454–1461. [Google Scholar] [CrossRef]
- Mills-Beale, J.; You, Z.; Fini, E.; Zada, B.; Lee, C.H.; Yap, Y.K. Aging Influence on Rheology Properties of Petroleum-Based Asphalt Modified with Biobinder. J. Mater. Civ. Eng. 2014, 26, 358–366. [Google Scholar] [CrossRef]
- Mogawer, W.S.; Fini, E.H.; Austerman, A.J.; Booshehrian, A.; Zada, B.; Mogawer, W.S.; Fini, E.H.; Austerman, A.J. Performance Characteristics of High Reclaimed Asphalt Pavement Containing Bio-Modifier. Road Mater. Pavement Des. 2015, 17, 753–767. [Google Scholar] [CrossRef]
- Mogawer, W.; Austerman, A.; Booshehrian, A. Performance Characteristics of High RAP Bio-Modified Asphalt Mixtures. In Proceedings of the Transportation Research Board 91st Annual Meeting, Washington, DC, USA, 22–26 January 2011. [Google Scholar]
- Yadykova, A.Y.; Ilyin, S.O. Rheological and Adhesive Properties of Nanocomposite Bitumen Binders Based on Hydrophilic or Hydrophobic Silica and Modified with Bio-Oil. Constr. Build. Mater. 2022, 342, 127946. [Google Scholar] [CrossRef]
- Fini, E.H.; Hosseinnezhad, S.; Oldham, D.J.; Gaudefroy, V.; Fini, E.H.; Hosseinnezhad, S.; Oldham, D.J. Source Dependency of Rheological and Surface Characteristics of Bio-Modified Asphalts. Road Mater. Pavement Des. 2016, 18, 408–424. [Google Scholar] [CrossRef]
- 2003/33/EC; Council Decision of 19 December 2002 Establishing Criteria and Procedures for the Acceptance of Waste Landfills Pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal of the European Communities: Brussels, Belgium, 2003.
Characteristic | Standard (EN) | Unit | 15/25 | 50/70 |
---|---|---|---|---|
Original Bitumen | ||||
Penetration at 25 °C | 1426 [41] | 0.1 mm | 15–25 | 50–70 |
Softening point R&B | 1427 [42] | °C | 60–76 | 46–54 |
Fraass breaking point | 12593 [43] | °C | TRB | ≤−8 |
Flash point | 2592 [44] | °C | ≥245 | ≥230 |
Solubility | 12592 [45] | % | ≥99.0 | ≥99.0 |
Residue after ageing | ||||
Mass variation | 12607-1 [46] | % | ≤0.5 | ≤0.5 |
Retained penetration | 1426 | % | ≥55 | ≥50 |
∆ Softening point | 1427 | °C | ≤10 | ≤11 |
Elemental Analysis | Bio-Binder (%, g/100 g) |
---|---|
C | 69.18 |
H | 7.85 |
N | 3.26 |
O | 19.72 |
Sieves UNE (mm) | 5 | 2.5 | 0.63 |
% Passing | 100 | 20 | 0 |
As | Ba | Cd | Cr | Cu | Hg | Mo | Ni | Pb | Sb | Se | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Results | <0.01 | 0.63 | <0.002 | 0.03 | <0.02 | <0.0005 | 0.03 | <0.03 | <0.02 | <0.02 | <0.02 | <0.1 |
1 Inert waste (mg·kg−1) | 0.50 | 20.0 | 0.04 | 0.50 | 2.00 | 0.01 | 0.50 | 0.40 | 0.50 | 0.06 | 0.10 | 4.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasia, J.; López-Montero, T.; Vidal, L.; Miró, R.; Bengoa, C.; Martínez, A.H. Characterization of Asphalt Binders Modified with Bio-Binder from Swine Manure. Appl. Sci. 2023, 13, 11412. https://doi.org/10.3390/app132011412
Gasia J, López-Montero T, Vidal L, Miró R, Bengoa C, Martínez AH. Characterization of Asphalt Binders Modified with Bio-Binder from Swine Manure. Applied Sciences. 2023; 13(20):11412. https://doi.org/10.3390/app132011412
Chicago/Turabian StyleGasia, Jaume, Teresa López-Montero, Lola Vidal, Rodrigo Miró, Christophe Bengoa, and Adriana H. Martínez. 2023. "Characterization of Asphalt Binders Modified with Bio-Binder from Swine Manure" Applied Sciences 13, no. 20: 11412. https://doi.org/10.3390/app132011412
APA StyleGasia, J., López-Montero, T., Vidal, L., Miró, R., Bengoa, C., & Martínez, A. H. (2023). Characterization of Asphalt Binders Modified with Bio-Binder from Swine Manure. Applied Sciences, 13(20), 11412. https://doi.org/10.3390/app132011412