Prediction of Wind Power with Machine Learning Models
Abstract
:1. Introduction
- In the current investigation, a series of multi-objective predictive models were created utilising a range of cutting-edge ML methodologies, such as CNN and LSTM, to augment the precision of prognostication.
- Additional input parameters have been incorporated with wind speed, wind direction, active power, and theoretical power data obtained via the SCADA system to enhance the models’ predictive capabilities. These supplementary parameters encompass a range of weather-related factors, such as air temperature, precipitation, and air density.
- The current investigation incorporates statistical performance deviation indicators to substantially augment the precision of prognostications and effectively demonstrate the efficacy of the employed methodology.
- The current investigation entails meticulously analysing methodologies’ most favourable parameter parameters through input-output correlation matrices. Consequently, the degree to which the independent variables influence the dependent variable is established.
2. Materials and Methods
2.1. Obtaining Parameters and Pre-Processing
2.2. Proposed Model Architecture
2.2.1. Artificial Neural Network Structure
2.2.2. Convolutional Neural Network Structure
2.2.3. Recurrent Neural Networks Structure
2.2.4. Long Short-Term Memory Structure
2.3. Error Metrics
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H. Short-term wind power prediction via spatial-temporal analysis and deep residual networks. Front. Energy Res. 2022, 10, 662. [Google Scholar] [CrossRef]
- Yetis, Y.; Tehrani, K.; Jamshidi, M. Wind Speed Forecasting using Machine Learning Approach based on Meteorological Data case study. Energy Environ. Res. 2022, 12, 2. [Google Scholar] [CrossRef]
- Zhang, H.; Yue, D.; Dou, C.; Li, K.; Hancke, G. Two-Step Wind Power Prediction Approach with Improved Complementary Ensemble Empirical Mode Decomposition and Reinforcement Learning. IEEE Syst. J. 2022, 16, 2545. [Google Scholar] [CrossRef]
- Ummels, B.; Gibescu, M.; Pelgrum, E.; Kling, W.; Brand, A. Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch. IEEE Trans. Energy Convers. 2007, 22, 44–51. [Google Scholar] [CrossRef]
- Damchi, Y.; Eivazi, A. Power Swing and Fault Detection in the Presence of Wind Farms Using Generator Speed Zero-Crossing Moment. Int. Trans. Electr. Energy Syst. 2022, 2022, 2569810. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shakeri, M.; Tiong, S.K.; Khatun, F.; Amin, N.; Pasupuleti, J.; Hasan, M.K. Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks. Sustainability 2021, 13, 2393. [Google Scholar] [CrossRef]
- Ray, B.; Shah, R.; Islam, M.; Islam, S. A New Data-Driven Long-Term Solar Yield Analysis Model of Photovoltaic Power Plants. IEEE Access 2020, 8, 136223. [Google Scholar] [CrossRef]
- Abdalla, A.; Nazir, M.; Jiang, M.; Kadhem, A.; Wahab, N.; Cao, S.; Ji, R. Metaheuristic searching genetic algorithm based reliability assessment of hybrid power generation system. Energy Explor. Exploit. 2020, 39, 1. [Google Scholar] [CrossRef]
- Lahouar, A.; Ben Hadj Slama, J. Hour-ahead wind power forecast based on random forests. Renew. Energy 2017, 109, 529–541. [Google Scholar] [CrossRef]
- Sarp, A.; Mengüç, E.; Peker, M.; Güvenç, B. Data-Adaptive Censoring for Short-Term Wind Speed Predictors Based on MLP, RNN, and SVM. IEEE Syst. J. 2022, 16, 3625. [Google Scholar] [CrossRef]
- Li, J.; Mao, J. Ultra-short-term wind power prediction using BP neural network. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014; pp. 2001–2006. [Google Scholar] [CrossRef]
- Ma, J.; Ma, X. A review of forecasting algorithms and energy management strategies for microgrids. Syst. Sci. Control Eng. 2018, 6, 237–248. [Google Scholar] [CrossRef]
- Chu, X.; Bai, W.; Sun, Y.; Li, W.; Liu, C.; Song, H. A Machine Learning-Based Method for Wind Fields Forecasting Utilizing GNSS Radio Occultation Data. IEEE Access 2022, 10, 30258. [Google Scholar] [CrossRef]
- Meng, Y.; Chang, C.; Huo, J.; Zhang, Y.; Al-Neshmi, H.; Xu, J.; Xie, T. Research on Ultra-Short-Term Prediction Model of Wind Power Based on Attention Mechanism and CNN. BiGRU Combined. Front. Energy Res. 2022, 10, 1. [Google Scholar] [CrossRef]
- Cheng, W.; Feng, J.; Wang, Y.; Peng, Z.; Cheng, H.; Ren, X.; Shuai, Y.; Zang, S.; Liu, H.; Pu, X.; et al. High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks. Chaos 2022, 32, 053112. [Google Scholar] [CrossRef]
- Solas, M.; Cepeda, N.; Viegas, J.L. Convolutional Neural Network for Short-Term Wind Power Forecasting. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, T.; Huang, Z.; Tian, L.; Zhu, Y.; Wang, H.; Feng, S. Enhancing Wind Turbine Power Forecast via Convolutional Neural Network. Electronics 2021, 10, 261. [Google Scholar] [CrossRef]
- Agarwal, K.; Vadhera, S. Short-term Wind Speed Prediction using ANN. In Proceedings of the 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), Erode, India, 7–9 April 2022. [Google Scholar] [CrossRef]
- Chimaobi, A.; Ye, L. Using Convolutional Neural Network for Image Classification and Segmentation. Comput. Eng. Intell. Syst. 2022, 13, 21. [Google Scholar] [CrossRef]
- Tuerxun, W.; Xu, C.; Guo, H.; Guo, L.; Zeng, N.; Cheng, Z. An ultra-short-term wind speed prediction model using LSTM based on modified tuna swarm optimisation and successive variational mode decomposition. Energy Sci. Eng. 2022, 10, 3001. [Google Scholar] [CrossRef]
- Hao, Y.; Tian, C. A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting. Appl. Energy 2019, 238, 368–383. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Z.; Yu, X.; Li, B.; Yang, M. Research on Ultra-Short-Term Wind Power Prediction Considering Source Relevance. IEEE Access 2020, 8, 147703–147710. [Google Scholar] [CrossRef]
- Haq, K.; Harigovindan, V. Water Quality Prediction for Smart Aquaculture Using Hybrid Deep Learning Models. IEEE Access 2022, 10, 60078. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Tian, J.; Wang, Y.; Xiao, G.; Wang, P. Day-Ahead Economic Dispatch of Renewable Energy System Considering Wind and Photovoltaic Predicted Output. Int. Trans. Electr. Energy Syst. 2022, 2022, 14. [Google Scholar] [CrossRef]
- Ren, J.; Yu, Z.; Gao, G.; Yu, G.; Yu, J. A CNN-LSTM-LightGBM-based short-term wind power prediction method based on attention mechanism. Energy Rep. 2022, 8, 437–443. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Q.; Han, R.; Yang, J. A Hybrid GA–PSO–CNN Model for Ultra-Short-Term Wind Power Forecasting. Energies 2021, 14, 6500. [Google Scholar] [CrossRef]
- Çelebi, S.B.; Emiroğlu, B.G. Leveraging Deep Learning for Enhanced Detection of Alzheimer’s Disease Through Morphometric Analysis of Brain Images. Trait. Du Signal 2023, 40, 1355–1365. [Google Scholar] [CrossRef]
- Available online: https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset (accessed on 15 June 2023).
- Available online: https://www.renewables.ninja (accessed on 15 June 2023).
- Available online: https://www.google.com/maps (accessed on 15 June 2023).
- Triguero, I.; García-Gil, D.; Maillo, J.; Luengo, J.; García, S.; Herrera, F. Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1289. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, H.; Kumar, H.; Naveed, Q.; Takhi, C.; Jagota, V.; Jain, R. Automatic Control Model of Power Information System Access Based on Artificial Intelligence Technology. Math. Probl. Eng. 2022, 2022, 5677634. [Google Scholar] [CrossRef]
- Birecikli, B.; Karaman, Ö.A.; Çelebi, S.B.; Turgut, A. Failure load prediction of adhesively bonded GFRP composite joints using artificial neural networks. J. Mech. Sci. Technol. 2020, 34, 4631–4640. [Google Scholar] [CrossRef]
- Mostafa, K.; Zisis, I.; Moustafa, M.A. Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review. Appl. Sci. 2022, 12, 5232. [Google Scholar] [CrossRef]
- Babbar, S.; Langah, T. Wind Power Prediction Using Neural Networks with Different Training Models. Indones. J. Innov. Appl. Sci. (IJIAS) 2022, 2, 12–17. [Google Scholar] [CrossRef]
- Çalışkan, A. Diagnosis of malaria disease by integrating chi-square feature selection algorithm with convolutional neural networks and autoencoder network. Trans. Inst. Meas. Control 2023, 45, 975–985. [Google Scholar] [CrossRef]
- Acero-Cuellar, T.; Bianco, F.; Dobler, G.; Sako, M.; Qu, H. There’s no difference: Convolutional Neural Networks for transient detection without template subtraction. arXiv 2022, arXiv:2203.07390. [Google Scholar] [CrossRef]
- Çelebi, S.B.; Emiroğlu, B.G. A Novel Deep Dense Block-Based Model for Detecting Alzheimer’s Disease. Appl. Sci. 2023, 13, 8686. [Google Scholar] [CrossRef]
- Salah, S.; Alsamamra, H.R.; Shoqeir, J.H. Exploring Wind Speed for Energy Considerations in Eastern Jerusalem-Palestine Using Machine-Learning Algorithms. Energies 2022, 15, 2602. [Google Scholar] [CrossRef]
- Muneer, A.; Ali, R.; Almaghthawi, A.; Taib, S.; Alghamdi, A.; Ghaleb, E. Short-term residential load forecasting using long short-term memory recurrent neural network. Int. J. Electr. Comput. Eng. (IJECE) 2022, 12, 5589. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chang, H.-T.; Chien, C.-H. Hybrid LSTM-ARMA Demand-Forecasting Model Based on Error Compensation for Integrated Circuit Tray Manufacturing. Mathematics 2022, 10, 2158. [Google Scholar] [CrossRef]
- Saglam, M.; Spataru, C.; Karaman, O.A. Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island. Energies 2022, 15, 5950. [Google Scholar] [CrossRef]
- Saglam, M.; Spataru, C.; Karaman, O.A. Forecasting Electricity Demand in Turkey Using Optimisation and Machine Learning Algorithms. Energies 2023, 16, 4499. [Google Scholar] [CrossRef]
- Karaman, Ö.A. Performance evaluation of seasonal solar irradiation models—Case study: Karapınar town, Turkey. Case Stud. Therm. Eng. 2023, 49, 103228. [Google Scholar] [CrossRef]
- Karaman, Ö.A.; Ağır, T.T.; Arsel, İ. Estimation of solar radiation using modern methods. Alex. Eng. J. 2021, 60, 2447–2455. [Google Scholar] [CrossRef]
Layer | Output Shape | Parameter |
---|---|---|
Dense | (, 64) | 704 |
Dense | (, 32) | 2080 |
Dense | (, 1) | 33 |
Total Parameter | 2817 |
Layer | Output Shape | Parameter |
---|---|---|
Conv1D | (, 8, 32) | 128 |
Max Pooling 1D | (, 4, 32) | 0 |
Flatten | (, 128) | 0 |
Dense | (, 64) | 8256 |
Dense | (, 32) | 2080 |
Dense | (, 1) | 33 |
Total Parameter | 10,497 |
Layer | Output Shape | Parameter |
---|---|---|
Simple RNN | (, 32) | 1088 |
Flatten | (, 32) | 0 |
Dense | (, 64) | 2112 |
Dense | (, 32) | 2080 |
Dense | (, 1) | 33 |
Total Parameter | 5313 |
Layer | Output Shape | Parameter |
---|---|---|
Conv1D | (, 8, 32) | 128 |
LSTM | (, 64) | 24,832 |
Dense | (, 64) | 4160 |
Dense | (, 32) | 2080 |
Dense | (, 1) | 33 |
Total Parameter | 31,233 |
Machine Learning Models | Performance Evaluation on Training Data Set | Performance Evaluation on Testing Data Set | Training Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|
MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | R2 | ||
ANN | 0.0224 | 0.0057 | 0.0757 | 0.9345 | 0.0245 | 0.0062 | 0.0787 | 0.9301 | 81.6 |
CNN | 0.0218 | 0.0054 | 0.0732 | 0.9388 | 0.0235 | 0.0055 | 0.0742 | 0.9378 | 85.3 |
RNN | 0.0196 | 0.0038 | 0.0615 | 0.9567 | 0.0218 | 0.0043 | 0.0656 | 0.9514 | 82.7 |
LSTM | 0.0179 | 0.0027 | 0.0517 | 0.9694 | 0.0209 | 0.0038 | 0.0614 | 0.9574 | 85.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaman, Ö.A. Prediction of Wind Power with Machine Learning Models. Appl. Sci. 2023, 13, 11455. https://doi.org/10.3390/app132011455
Karaman ÖA. Prediction of Wind Power with Machine Learning Models. Applied Sciences. 2023; 13(20):11455. https://doi.org/10.3390/app132011455
Chicago/Turabian StyleKaraman, Ömer Ali. 2023. "Prediction of Wind Power with Machine Learning Models" Applied Sciences 13, no. 20: 11455. https://doi.org/10.3390/app132011455
APA StyleKaraman, Ö. A. (2023). Prediction of Wind Power with Machine Learning Models. Applied Sciences, 13(20), 11455. https://doi.org/10.3390/app132011455