Light Can Induce Accumulation of Nutritional Antioxidants in Black Chokeberry Cell Suspension Culture
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Exopolysaccharide Content
2.3. Total Anthocyanins Assay
2.4. Phenolic Extraction
2.5. HPLC Quantification
2.6. Total Phenolic Content
2.7. Antioxidant Activity Assays
2.7.1. DPPH
2.7.2. TEAC
2.7.3. CUPRAC
2.7.4. FRAP
2.8. Statistical Analyses
3. Results
3.1. Evaluation of Cell Culture Growth
3.2. Anthocyanins Production and Secretion of Exopolysaccharides
3.3. HPLC Analyses
3.4. Total Phenolic Content and Antioxidant Activities Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Medica 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (michx.) elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Oziembłowski, M.; Trenka, M.; Czaplicka, M.; Maksimowski, D.; Nawirska-Olszańska, A. Selected properties of juices from black chokeberry (Aronia melanocarpa L.) fruits preserved using the pef method. Appl. Sci. 2022, 12, 7008. [Google Scholar] [CrossRef]
- Roda-Serrat, M.C.; Razi Parjikolaei, B.; Mohammadifakhr, M.; Martin, J.; Norddahl, B.; Errico, M. A case study for the extraction, purification, and co-pigmentation of anthocyanins from Aronia melanocarpa juice pomace. Foods 2022, 11, 3875. [Google Scholar] [CrossRef] [PubMed]
- Gerasimov, M.A.; Perova, I.B.; Eller, K.I.; Akimov, M.Y.; Sukhanova, A.M.; Rodionova, G.M.; Ramenskaya, G.V. Investigation of polyphenolic compounds in different varieties of black chokeberry Aronia melanocarpa. Molecules 2023, 28, 4101. [Google Scholar] [CrossRef]
- Gurčík, Ľ.; Bajusová, Z.; Ladvenicová, J.; Palkovič, J.; Novotná, K. Cultivation and processing of modern superfood—Aronia melanocarpa (black chokeberry) in slovak republic. Agriculture 2023, 13, 604. [Google Scholar] [CrossRef]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: In vitro and in vivo evidences and possible mechanisms of action: A review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Hwang, S.J.; Yoon, W.B.; Lee, O.-H.; Cha, S.J.; Kim, J.D. Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in korea. Food Chem. 2014, 146, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019, 284, 108–117. [Google Scholar] [CrossRef]
- Gao, N.; Shu, C.; Wang, Y.; Tian, J.; Lang, Y.; Jin, C.; Cui, X.; Jiang, H.; Liu, S.A.; Li, Z.; et al. Polyphenol components in black chokeberry (Aronia melanocarpa) as clinically proven diseases control factors—An overview. Food Sci. Hum. Wellness 2023. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.; Li, D.; Liu, X. Anthocyanin and proanthocyanidin from Aronia melanocarpa (michx.) ell.: Purification, fractionation, and enzyme inhibition. Food Sci. Nutr. 2023, 11, 3911–3922. [Google Scholar] [CrossRef] [PubMed]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Aronia melanocarpa flavonol extract—Antiradical and immunomodulating activities analysis. Plants 2023, 12, 2976. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Zheng, Y.; Liu, W.; Ding, C. Aronia melanocarpa polysaccharide ameliorates inflammation and aging in mice by modulating the ampk/sirt1/nf-κb signaling pathway and gut microbiota. Sci. Rep. 2021, 11, 20558. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Qin, X.; Han, Z.; Zhao, X.; Abuduaini, G.; Cheng, Z.; Yu, H. Effects of extraction methods on the structural characteristics and functional properties of insoluble dietary fiber extracted from Aronia melanocarpa. ACS Food Sci. Technol. 2023, 3, 666–674. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Peeva, Y.; Vladimirova-Kitova, L.; Kratchanova, M.; Kratchanov, C.; Denev, P. Antiatherogenic and cardioprotective effects of black chokeberry (Aronia melanocarpa) juice in aging rats. Evid.-Based Complement. Altern. Med. 2015, 2015, 717439. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Vladimirova-Kitova, L.; Kitov, S.; Denev, P. Black chokeberry (Aronia melanocarpa) functional beverages increase hdl-cholesterol levels in aging rats. Foods 2021, 10, 1641. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Vladimirova-Kitova, L.; Denev, P.; Kratchanova, M.; Kratchanov, C.; Kitov, S.; Kanarev, M. Functional beverages based on Aronia melanocarpa affect age-related aortic wall restructuring in rats. Scr. Sci. Medica 2017, 2017, 49. [Google Scholar]
- Kitova, L.G.; Delchev, S.; Daskalova, E.; Denev, P.; Kitov, S.I. Aronia melanocarpa (michx.) elliot influences age-dependent changes in the wall of the thoracic aorta and the lipid profile of male rats. Atherosclerosis 2021, 331, e135. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Vladimirova-Kitova, L.; Bivolarski, I.; Pencheva, M.; Denev, P. Aronia melanocarpa fruit juice modulates ACE2 immunoexpression and diminishes age-related remodeling of coronary arteries in rats. Foods 2022, 11, 1220. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Denev, P.; Vladimirova-Kitova, L.; Valcheva-Kuzmanova, S.; Kitov, S.; Kanarev, M. Age-related changes in rat thymus connective tissue influenced by Aronia melanocarpa. Acta Morphol. Anthr. 2019, 26, 1–2. [Google Scholar]
- Valcheva-Kuzmanova, S.; Eftimov, M.; Denev, P.; Krachanova, M.; Belcheva, A. Effect of Aronia melanocarpa fruit juice on alcohol-induced depressive-like behavior in rats. Scr. Sci. Medica 2015, 45. [Google Scholar]
- Daskalova, E.; Delchev, S.; Topolov, M.; Dimitrova, S.; Uzunova, Y.; Valcheva-Kuzmanova, S.; Kratchanova, M.; Vladimirova-Kitova, L.; Denev, P. Aronia melanocarpa (michx.) elliot fruit juice reveals neuroprotective effect and improves cognitive and locomotor functions of aged rats. Food Chem. Toxicol. 2019, 132, 110674. [Google Scholar] [CrossRef]
- Valcheva-Kuzmanova, S.; Denev, P.; Eftimov, M.; Georgieva, A.; Kuzmanova, V.; Kuzmanov, A.; Kuzmanov, K.; Tzaneva, M. Protective effects of Aronia melanocarpa juices either alone or combined with extracts from rosa canina or alchemilla vulgaris in a rat model of indomethacin-induced gastric ulcers. Food Chem. Toxicol. 2019, 132, 110739. [Google Scholar] [CrossRef]
- Valcheva-Kuzmanova, S.; Denev, P.; Krachanova, M.; Surleva, A.; Belcheva, A. Composition and antioxidant activity of Aronia melanocarpa fruit juice. Varna Med. Forum 2014, 3, 15–20. [Google Scholar]
- Li, L.; Li, J.; Xu, H.; Zhu, F.; Li, Z.; Lu, H.; Zhang, J.; Yang, Z.; Liu, Y. The protective effect of anthocyanins extracted from Aronia melanocarpa berry in renal ischemia-reperfusion injury in mice. Mediat. Inflamm. 2021, 2021, 7372893. [Google Scholar] [CrossRef]
- Szopa, A.; Ekiert, H.; Muszyńska, B. Accumulation of hydroxybenzoic acids and other biologically active phenolic acids in shoot and callus cultures of Aronia melanocarpa (michx.) elliott (black chokeberry). Plant Cell Tissue Organ Cult. (PCTOC) 2013, 113, 323–329. [Google Scholar] [CrossRef]
- Szopa, A.; Ekiert, H. Production of biologically active phenolic acids in Aronia melanocarpa (michx.) elliott in vitro cultures cultivated on different variants of the murashige and skoog medium. Plant Growth Regul. 2014, 72, 51–58. [Google Scholar] [CrossRef]
- Kwiecień, I.; Szopa, A.; Madej, K.; Ekiert, H. Arbutin production via biotransformation of hydroquinone in in vitro cultures of Aronia melanocarpa (michx.) elliott. Acta Biochim. Pol. 2013, 60. [Google Scholar] [CrossRef]
- Agnieszka, S.; Paweł, K.; Halina, E. The agitated microshoot cultures of red and purple aronias-a potential source of bioactive flavonoids for phytotherapy. Rev. Clin. Pharmacol. Drug Ther. 2017, 15, 67. [Google Scholar]
- Szopa, A.; Kubica, P.; Komsta, Ł.; Walkowicz-Bożek, A.; Ekiert, H. The effect of feeding culture media with biogenetic precursors on high production of depsides in agitated shoot cultures of black and red aronias. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 142, 379–399. [Google Scholar] [CrossRef]
- Ekiert, H.M.; Szopa, A.; Kubica, P. High production of depsides and other phenolic acids in different types of shoot cultures of three aronias: Aronia melanocarpa, Aronia arbutifolia, Aronia × prunifolia. In Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications; Ramawat, K.G., Ekiert, H.M., Goyal, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 337–364. [Google Scholar]
- Ekiert, H.; Kubica, P.; Szopa, A. Successful cultivation and utilization of Aronia melanocarpa (michx.) elliott (black chokeberry), a species of north-american origin, in poland and the biosynthetic potential of cells from in vitro cultures. In Medicinal Plants: Domestication, Biotechnology and Regional Importance; Ekiert, H.M., Ramawat, K.G., Arora, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 69–111. [Google Scholar]
- Szopa, A.; Starzec, A.; Ekiert, H. The importance of monochromatic lights in the production of phenolic acids and flavonoids in shoot cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia × prunifolia. J. Photochem. Photobiol. B Biol. 2018, 179, 91–97. [Google Scholar] [CrossRef]
- Szopa, A.; Kubica, P.; Snoch, A.; Ekiert, H. High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia × Prunifolia. Acta Physiol. Plant. 2018, 40, 48. [Google Scholar] [CrossRef]
- Szopa, A.; Kubica, P.; Ekiert, H. Agitated shoot cultures of Aronia arbutifolia and Aronia × prunifolia: Biotechnological studies on the accumulation of phenolic compounds and biotransformation capability. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 134, 467–479. [Google Scholar] [CrossRef]
- Thorpe, T.A. History of plant tissue culture. In Plant Cell Culture Protocols; Loyola-Vargas, V.M., Vázquez-Flota, F., Eds.; Humana Press: Totowa, NJ, USA, 2006; pp. 9–32. [Google Scholar]
- Ercili-Cura, D.; Barth, D. Cellular Agriculture; American Chemical Society: Washington, DC, USA, 2020; p. 1. [Google Scholar]
- Eibl, R.; Senn, Y.; Gubser, G.; Jossen, V.; Bos, C.v.d.; Eibl, D. Cellular agriculture: Opportunities and challenges. Annu. Rev. Food Sci. Technol. 2021, 12, 51–73. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.; Slavov, A.; Vasileva, I.; Pavlov, A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng. Life Sci. 2018, 18, 779–798. [Google Scholar] [CrossRef]
- Rischer, H.; Szilvay, G.R.; Oksman-Caldentey, K.-M. Cellular agriculture—Industrial biotechnology for food and materials. Curr. Opin. Biotechnol. 2020, 61, 128–134. [Google Scholar] [CrossRef]
- Schirmer, C.; Eibl, R.; Maschke, R.W.; Mozaffari, F.; Junne, S.; Daumke, R.; Ottinger, M.; Göhmann, R.; Ott, C.; Wenk, I.; et al. Single-use technology for the production of cellular agricultural products: Where are we today? Chem. Ing. Tech. 2022, 94, 2018–2025. [Google Scholar] [CrossRef]
- Bapat, V.A.; Kavi Kishor, P.B.; Jalaja, N.; Jain, S.M.; Penna, S. Plant cell cultures: Biofactories for the production of bioactive compounds. Agronomy 2023, 13, 858. [Google Scholar] [CrossRef]
- Newman, L.; Fraser, E.; Newell, R.; Bowness, E.; Newman, K.; Glaros, A. Chapter 1—Cellular agriculture and the sustainable development goals. In Genomics and the Global Bioeconomy; Lopez-Correa, C., Suarez-Gonzalez, A., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 3–23. [Google Scholar]
- Krasteva, G.; Georgiev, V.; Pavlov, A. Recent applications of plant cell culture technology in cosmetics and foods. Eng. Life Sci. 2021, 21, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Webb, L.; Fleming, A.; Ma, L.; Lu, X. Uses of cellular agriculture in plant-based meat analogues for improved palatability. ACS Food Sci. Technol. 2021, 1, 1740–1747. [Google Scholar] [CrossRef]
- Martinez, A.A.; Panuska, C.; Kurina-Sanz, M.; Rinaldoni, A.N.; Orden, A.A. Undifferentiated cells of tessaria absinthioides with high nutritional value and health-promoting phytochemicals. An approach based on plant cellular agriculture. Plant Foods Hum. Nutr. 2023. [Google Scholar] [CrossRef]
- Ananga, A.; Georgiev, V.; Ochieng, J.; Phills, B.; Tsolova, V. Production of anthocyanins in grape cell cultures: A potential source of raw material for pharmaceutical, food, and cosmetic industries. In The Mediterranean Genetic Code; Danijela, P., Barbara, S., Eds.; IntechOpen: Rijeka, Croatia, 2013; pp. 247–287. [Google Scholar]
- Krasteva, G.; Teneva-Angelova, T.; Badjakov, I.; Dincheva, I.; Pavlov, A.; Georgiev, V. Plant cell culture technology as potential environmentally-safe alternative for sustainable production of food supplements, Biotechnology for a circular bioeconomy. In Proceedings of the European Federation of Biotechnology and Asian Federation of Biotechnology Virtual Conference, online, 28–29 March 2023. [Google Scholar]
- Marchev, A.; Georgiev, V.; Badjakov, I.; Kondakova, V.; Nikolova, M.; Pavlov, A. Triterpenes production by rhizogenic callus of salvia scabiosifolia lam. Obtained via agrobacterium rhizogenes mediated genetic transformation. Biotechnol. Biotechnol. Equip. 2011, 25, 30–33. [Google Scholar] [CrossRef]
- Pavlov, A.; Werner, S.; Ilieva, M.; Bley, T. Characteristics of helianthus annuus plant cell culture as a producer of immunologically active exopolysaccharides. Eng. Life Sci. 2005, 5, 280–283. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by uv-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Zhang, Z.; Kou, X.; Fugal, K.; McLaughlin, J. Comparison of hplc methods for determination of anthocyanins and anthocyanidins in bilberry extracts. J. Agric. Food Chem. 2004, 52, 688–691. [Google Scholar] [CrossRef]
- Krasteva, G.; Berkov, S.; Pavlov, A.; Georgiev, V. Metabolite profiling of gardenia jasminoides ellis in vitro cultures with different levels of differentiation. Molecules 2022, 27, 8906. [Google Scholar] [CrossRef]
- Laux, T. The stem cell concept in plants: A matter of debate. Cell 2003, 113, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-K.; Jin, Y.-W.; Park, J.H.; Yoo, Y.M.; Hong, S.M.; Amir, R.; Yan, Z.; Kwon, E.; Elfick, A.; Tomlinson, S.; et al. Cultured cambial meristematic cells as a source of plant natural products. Nat. Biotechnol. 2010, 28, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Rogge-Renner, G.D.; Steiner, N.; Schmidt, É.C.; Bouzon, Z.L.; Farias, F.L.; Guerra, M.P. Structural and component characterization of meristem cells in araucaria angustifolia (Bert.) O. Kuntze zygotic embryo. Protoplasma 2013, 250, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, X.; Ding, C.; Zheng, Y.; Zhu, H.; Cheng, Z.; Zhao, C.; Liu, W. Aronia melanocarpa polysaccharide ameliorates liver fibrosis through tgf-β1-mediated the activation of pi3k/akt pathway and modulating gut microbiota. J. Pharmacol. Sci. 2022, 150, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.W.; Rustam, R.; Gao, D.; Kim, H.M.; Kang, J.S. Characterization of the bioactive components in Aronia melanocarpa (black chokeberry) fruit extracts and purified fractions by spectrophotometry and high-performance liquid chromatography (HPLC). Anal. Lett. 2023, 56, 2291–2308. [Google Scholar] [CrossRef]
- Georgieva, L.; Ivanov, I.; Marchev, A.; Aneva, I.; Denev, P.; Georgiev, V.; Pavlov, A. Protopine production by fumaria cell suspension cultures: Effect of light. Appl. Biochem. Biotechnol. 2015, 176, 287–300. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Edwards, D.; Pun, S.; Williams, D. Evaluation of antioxidant capacity (ABTS and CUPRAC) and total phenolic content (folin-ciocalteu) assays of selected fruit, vegetables, and spices. Int. J. Food Sci. 2022, 2022, 2581470. [Google Scholar] [CrossRef] [PubMed]
- Caretto, S.; Linsalata, V.; Colella, G.; Mita, G.; Lattanzio, V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 2015, 16, 26378–26394. [Google Scholar] [CrossRef]
Compound, µg/g DW | Light Cycles | Dark |
---|---|---|
Gallic acid | ND * | 32.84 ± 16.56 |
(+)-Catechin | 2140.32 ± 527.61 a | 163.99 ± 8.69 b |
Chlorogenic acid | 1812.79 ± 46.19 a | 86.96 ± 12.68 b |
Vanillic acid | ND | 64.83 ± 2.06 |
Caffeic acid | 48.26 ± 15.28 a | 37.42 ± 4.89 a |
(−)-Epicatechin | 1934.60 ± 727.56 a | 154.22 ± 11.43 b |
p-Coumaric acid | 18.81 ± 4.39 a | 8.35 ± 3.84 b |
Salicylic acid | 686.39 ± 299.58 | ND |
Rutin | 18.74 ± 0.61 | ND |
Hesperidin | 81.09 ± 16.62 a | 7.03 ± 1.59 b |
Antioxidant Activity * | Light Cycles | Dark |
---|---|---|
DPPH | 21.36 ± 0.11 a | 4.27 ± 0.17 b |
TEAC | 10.08 ± 0.07 a | 1.41 ± 0.12 b |
FRAP | 34.85 ± 0.46 a | 4.26 ± 0.08 b |
CUPRAC | 126.74 ± 1.49 a | 18.44 ± 0.54 b |
Total Phenolic ** | 8.17 ± 0.04 a | 1.58 ± 0.03 b |
Total Phenolic | ||
---|---|---|
r * | p-Value | |
CUPRAC | 0.99987 | 0.000000023681 |
TEAC | 0.99991 | 0.000000013358 |
DPPH | 0.99982 | 0.000000045980 |
FRAP | 0.99985 | 0.000000035341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasteva, G.; Teneva-Angelova, T.; Badjakov, I.; Dincheva, I.; Georgiev, V.; Pavlov, A. Light Can Induce Accumulation of Nutritional Antioxidants in Black Chokeberry Cell Suspension Culture. Appl. Sci. 2023, 13, 11557. https://doi.org/10.3390/app132011557
Krasteva G, Teneva-Angelova T, Badjakov I, Dincheva I, Georgiev V, Pavlov A. Light Can Induce Accumulation of Nutritional Antioxidants in Black Chokeberry Cell Suspension Culture. Applied Sciences. 2023; 13(20):11557. https://doi.org/10.3390/app132011557
Chicago/Turabian StyleKrasteva, Gergana, Tsvetanka Teneva-Angelova, Ilian Badjakov, Ivayla Dincheva, Vasil Georgiev, and Atanas Pavlov. 2023. "Light Can Induce Accumulation of Nutritional Antioxidants in Black Chokeberry Cell Suspension Culture" Applied Sciences 13, no. 20: 11557. https://doi.org/10.3390/app132011557
APA StyleKrasteva, G., Teneva-Angelova, T., Badjakov, I., Dincheva, I., Georgiev, V., & Pavlov, A. (2023). Light Can Induce Accumulation of Nutritional Antioxidants in Black Chokeberry Cell Suspension Culture. Applied Sciences, 13(20), 11557. https://doi.org/10.3390/app132011557