Examining Commercial Crime Call Determinants in Alley Commercial Districts before and after COVID-19: A Machine Learning-Based SHAP Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Crime Influencers
2.2. Distinction of This Research
3. Research Methodology
3.1. Study Area
3.2. Data Collection
3.3. Data Analysis
3.4. ML Model Building and Selection
4. Results and Discussion
4.1. Descriptive Statistics
4.2. Machine Learning Models
4.3. SHAP
4.4. Partial Dependence Plot
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mu, X.; Zhang, X.; Anthony Gar-On Yeh; Yu, Y.; Wang, J. Structural Changes in Human Mobility Under the Zero-COVID Strategy in China. Environ. Plan. B Urban Anal. City Sci. 2023. [Google Scholar] [CrossRef]
- Mu, X.; Yeh, A.G.-O.; Zhang, X. The Interplay of Spatial Spread of COVID-19 and Human Mobility in the Urban System of China During the Chinese New Year. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1955–1971. [Google Scholar] [CrossRef]
- Baumann, F.; Buchwald, A.; Friehe, T.; Hottenrott, H.; Mechtel, M. The Effect of a Ban on Late-night Off-premise Alcohol Sales on Violent Crime: Evidence from Germany. Int. Rev. L. Econ. 2019, 60, 105850. [Google Scholar] [CrossRef]
- Nivette, A.E.; Zahnow, R.; Aguilar, R.; Ahven, A.; Amram, S.; Ariel, B.; Burbano, M.J.A.; Astolfi, R.; Baier, D.; Bark, H.; et al. A Global Analysis of the Impact of COVID-19 Stay-at-home Restrictions on Crime. Nat. Hum. Behav. 2021, 5, 868–877. [Google Scholar] [CrossRef]
- Guo, X.; Tu, X.; Huang, G.; Fang, X.; Kong, L.; Wu, J. Urban Greenspace Helps Ameliorate People’s Negative Sentiments during the COVID-19 Pandemic: The case of Beijing. Build Environ. 2022, 223, 109449. [Google Scholar] [CrossRef]
- Korean National Police Agency Police Statistical Yearbook. Available online: https://www.police.go.kr/user/bbs/BD_selectBbsList.do?q_bbsCode=1117 (accessed on 8 August 2022).
- Yi, K.P.; Kim, D.W. Crime Analyses of Urban Parks in Seoul Focusing on Spatial Analysis. JCSSED 2015, 6, 64–86. Available online: http://www.riss.kr/link?id=A103120974 (accessed on 21 July 2023).
- Lee, K.H.; Kang, K.Y. Analysis of Crime Risk Based on Environmental Features of Commercial Area. JCSSED 2015, 6, 71–104. Available online: https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002171764 (accessed on 21 July 2023).
- De Nadai, M.; Xu, Y.; Letouzé, E.; González, M.C.; Lepri, B. Socio-economic, Built Environment, and Mobility Conditions Associated with Crime: A Study of Multiple Cities. Sci. Rep. 2020, 10, 13871. [Google Scholar] [CrossRef]
- Hong, H. Research on Creating Direction of a Safe Commercial District through the Establishment of a Commercial District Safety Index in Seoul; Seoul Credit Guarantee Foundation Small Business Policy Research Center: Seoul, Republic of Korea, 2021; pp. 27–40. [Google Scholar]
- Kim, S.J.; Cao, Y.; Lee, S.G. Analysis of the Association between Urban Environmental Characteristics and Crime Incidence—Using Urban Big Data and Spatial Durbin Model. J. Urban Des. Inst. Korea 2022, 23, 143–162. Available online: http://www.riss.kr/link?id=A108183843 (accessed on 19 July 2023). [CrossRef]
- Park, H.J.; Park, S. Crime Prevention and Environmental Design in Residential Areas (CPTED) Environmental Analysis of Province Settlement Conditions by CPTED Principles—Focused on CPTED Project in Namsan Village, Hongseong. J. Urban Des. 2022, 4, 66–74. Available online: http://www.riss.kr/link?id=A108448825 (accessed on 21 July 2023).
- Kim, Y.; Wo, J.C. The Time-Varying Effects of Physical Environment for Walkability on Neighborhood Crime. Cities 2023, 142, 104530. Available online: https://www.sciencedirect.com/science/article/pii/S0264275123003426 (accessed on 26 August 2023). [CrossRef]
- Jung, J.Y. Big Data Analysis on 112 Report Data: Focusing on the EDA Technique. Korean Secur. J. 2021, 66, 71–92. [Google Scholar]
- Kim, H.J.; Choi, Y. A Study on the Influence of the Space Syntax and the Urban Characteristics on the Incidence of Crime Using Negative Binomial Regression. KSCE J. Civ. Eng. 2016, 36, 333–340. Available online: http://www.riss.kr/link?id=A103547301 (accessed on 29 June 2023).
- Jung, D.H. A Study on the Influencing Factors of Crime Occurrence in Metropolitan Cities. Ph.D. Dissertation, Graduate School, Kwangwoon University, Seoul, Republic of Korea, 2018. [Google Scholar]
- Lee, H.W. A Study on the Factors Affecting Crime in the Street Environment of Residential Areas: Based on CPTED Theory. Master’s Thesis, The University of Seoul, Seoul, Republic of Korea, 2021. [Google Scholar]
- Kim, D.K.; Yoon, Y.J.; Ahn, K.H. A Study on Urban Crime in Relation to Land Use Patterns. J. Korea Plan. 2007, 42, 155–168. Available online: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00937696 (accessed on 10 July 2023).
- Michael, S.E.; Bruce Hull, R.; Zahm, D.L. Environmental Factors Influencing Auto Burglary. Environ. Behav. 2001, 33, 368–388. [Google Scholar] [CrossRef]
- Sadeek, S.N.; Minhuz Uddin Ahmed, A.J.M.; Hossain, M.; Hanaoka, S. Effect of Land Use on Crime Considering Exposure and Accessibility. Habitat Int. 2019, 89, 102003. Available online: https://www.sciencedirect.com/science/article/pii/S0197397518302340 (accessed on 10 July 2023). [CrossRef]
- Jang, Y.J.; Lee, S.G. Analysis of Neighborhood Environment Factors Influencing Fear of Crime: Focusing on CPTED Elements. J. Korea Plan. 2022, 57, 25–39. Available online: http://www.riss.kr/link?id=A108333090 (accessed on 10 July 2023).
- Kim, J.; Noh, H. Impact of the Perceived Crime at the Local and National Levels. J. Int. Crim. Justice 2020, 2, 1–29. Available online: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10482669 (accessed on 5 July 2023). [CrossRef]
- Rees-Punia, E.; Hathaway, E.D.; Gay, J.L. Crime, Perceived Safety, and Physical Activity: A Meta-Analysis. Prev. Med. 2018, 111, 307–313. [Google Scholar] [CrossRef]
- Zhang, F.; Fan, Z.; Kang, Y.; Hu, Y.; Ratti, C. “Perception Bias”: Deciphering a Mismatch Between Urban Crime and Perception of Safety. Landscape Urban Plan. 2021, 207, 104003. Available online: https://www.sciencedirect.com/science/article/pii/S0169204620314870 (accessed on 29 June 2023). [CrossRef]
- Ogneva-Himmelberger, Y.; Ross, L.; Caywood, T.; Khananayev, M.; Starr, C. Analyzing the Relationship between Perception of Safety and Reported Crime in an Urban Neighborhood Using GIS and Sketch Maps. ISPRS Int. J. Geoinf. 2019, 8, 531. [Google Scholar] [CrossRef]
- Kang, J.M.; Kim, H.J. The Effect of the Green Space on the Crime in the City. J. Korean Soc. Civ. Eng. D 2007, 27, 117–129. Available online: https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001038551 (accessed on 19 July 2023).
- Sadler, R.C.; Pizarro, J.; Turchan, B.; Gasteyer, S.P.; McGarrell, E.F. Exploring the Spatial-temporal Relationships between a Community Greening Program and Neighborhood Rates of Crime. Appl. Geogr. 2017, 83, 13–26. Available online: https://www.sciencedirect.com/science/article/pii/S0143622816305707 (accessed on 23 August 2023). [CrossRef]
- Hong, H.G. A Study on Physical Environmental Factors Affecting the Fear of Crime in Street Space of the Commercial Area. Master’s Thesis, Korea University, Seoul, Republic of Korea, 2023. [Google Scholar]
- Seo, M.J.; Lee, S.G.; Kang, S.J. An Analysis of the Relationship between the Physical Characteristics of Commercial Streets and Street Crime—Focused on the Old Downtown Commercial Street. Aut. Ann. Conf. AIK 2021, 1, 238–241. [Google Scholar]
- Zahnow, R. Mixed Land Use: Implications for Violence and Property Crime. City Community 2018, 17, 1119–1142. [Google Scholar] [CrossRef]
- Hakyemez, T.C.; Badur, B. Crime Risk Stations: Examining Spatiotemporal Influence of Urban Features through Distance-Aware Risk Signal Functions. ISPRS Int. J. Geoinf. 2021, 10, 472. [Google Scholar] [CrossRef]
- Li, L.; Cheng, J.; Bannister, J.; Mai, X. Geographically and Temporally Weighted Co-location Quotient: An Analysis of Spatiotemporal Crime Patterns in Greater Manchester. Int. J. Geogr. Inf. Sci. 2022, 36, 918–942. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D. The Crime-Reducing Effects of Gentrification; Korea Research Institute for Human Settlements: Seoul, Republic of Korea, 2022. [Google Scholar]
- Kim, J.S.; Gang, T.G.; Choo, J.H.; Roh, S.H. Korean Crime Victim Survey (VI): Commercial Victimization Survey. Korean Inst. Criminol. 2016, 6, 1–686. Available online: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07157782 (accessed on 19 July 2023).
- Bark, H.M.; Jang, K.H.; Lim, W.S. Korean Institute of Criminology and Justice Changes in Crime Patterns after the COVID-19 Pandemic; Korean Institute of Criminology and Justice: Seoul, Republic of Korea, 2021. [Google Scholar]
- Seoul Open Data Market. Available online: https://data.seoul.go.kr/ (accessed on 30 May 2023).
- Yu, H.J. Analysis of the Relationship between the Living Population and Land-Use Characteristics: Focused on the Seoul Area. J. Korean Geogr. Soc. 2022, 25, 67–85. Available online: http://www.riss.kr/link?id=A108400278 (accessed on 23 August 2023).
- Treepedia. Available online: http://senseable.mit.edu/treepedia (accessed on 3 March 2022).
- Venter, Z.S.; Shackleton, C.; Faull, A.; Lancaster, L.; Breetzke, G.; Edelstein, I. Is Green Space Associated with Reduced Crime? A National-Scale Study from the Global South. Sci. Total Environ. 2022, 825, 154005. Available online: https://www.sciencedirect.com/science/article/pii/S004896972201097X (accessed on 23 August 2023). [CrossRef]
- Ali, M.N.D. PyCaret: An Open Source, Low-Code Machine Learning Library in Python; PyCaret Version. 2020. Available online: https://www.marktechpost.com/2020/04/18/pycaret-an-open-source-low-code-machine-learning-library-in-python/ (accessed on 3 March 2022).
- Kim, M.; Kim, D.; Jin, D.; Kim, G. Application of Explainable Artificial Intelligence (XAI) in Urban Growth Modeling: A Case Study of Seoul Metropolitan Area, Korea. Land 2023, 12, 420. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Asadi, F.; Jafari, R.; Bashash, D.; Abolghasemi, H.; Aria, M. Deep Convolutional Neural Net-work-Based Computer-Aided Detection System for COVID-19 Using Multiple Lung Scans: Design and Implemen-tation Study. J. Med. Internet Res. 2021, 23, e27468. [Google Scholar] [CrossRef] [PubMed]
- Ghaderzadeh, M.; Aria, M. Management of COVID-19 Detection Using Artificial Intelligence in 2020 Pandemic. In Proceedings of the 5th International Conference on Medical and Health Informatics, Kyoto, Japan, 14–16 May 2021; Available online: https://api.semanticscholar.org/CorpusID:239890137 (accessed on 23 August 2023).
- Saeed, U.; Jan, S.U.; Lee, Y.; Koo, I. Fault Diagnosis based on Extremely Randomized Trees in Wireless Sensor Networks. Reliab. Eng. Syst. Saf. 2021, 205, 107284. Available online: https://www.sciencedirect.com/science/article/pii/S095183202030781X (accessed on 11 August 2023). [CrossRef]
- Seo, J.B.; Kang, N.H. Exploration of Factors on Pre-service Science Teachers’ Major Satisfaction and Academic Satisfaction Using Machine Learning and Explainable AI SHAP. J. Sci. Edu. 2023, 47, 37–51. Available online: http://www.riss.kr/link?id=A108574943 (accessed on 1 September 2023).
- Mayhew, B.H.; Levinger, R.L. Size and the Density of Interaction in Human Aggregates. Am. J. Sociol. 1976, 82, 86–110. [Google Scholar] [CrossRef]
- Branas, C.C.; Cheney, R.A.; MacDonald, J.M.; Tam, V.W.; Jackson, T.D.; Ten Have, T.R. A Difference-in-differences Analysis of Health, Safety, and Greening Vacant Urban Space. Am. J. Epidem. 2011, 174, 1296–1306. [Google Scholar] [CrossRef]
- Bogar, S.; Beyer, K.M. Green Space, Violence, and Crime: A Systematic Review. Trauma Violence Abuse 2016, 17, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.A.; Kang, J.Y. Relationship between the Spatial Distribution of Crime-prone Areas and the Characteristics of Urban Decline—Focusing on Crime Risk Indicators Using GIS-based Spatial Statistics. KIEAE J. 2021, 21, 87–94. Available online: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10755730 (accessed on 21 July 2023). [CrossRef]
- Jang, J.W.; Cho, S.H. A Study on Inequality and Crime -Focusing on Income Inequality. Korean Assoc. Public Saf. Crim. Just. 2019, 28, 419–448. Available online: https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002514513 (accessed on 21 July 2023). [CrossRef]
- Kang, S.J. Impact of Spatial Disorder on Fear of Crime. Master’s Thesis, Chung-Ang University, Seoul, Republic of Korea, 2017. [Google Scholar]
Variables | Mean | S.D. | Min. | Max. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | ||
Dependent variable | Commercial crime report density | 0.00134 | 0.00137 | 0.00130 | 0.00112 | 0.00112 | 0.0011 | 0.00004 | 0.00005 | 0 | 0.01196 | 0.127 | 0.0111 |
Socio- economic features | Living population | 2,814,914 | 2,819,768 | 2,742,450 | 1,538,767 | 1,585,361 | 1,631,706 | 85,950 | 60,597 | 56,408 | 16,900,000 | 18,800,000 | 21,800,000 |
Youth sales ratio | 37.55 | 36.91 | 35.5 | 10.59 | 10.77 | 10.61 | 0.76 | 0 | 0 | 78.40 | 79.65 | 78.62 | |
Middle-aged sales ratio | 40.98 | 41.14 | 41.0 | 8.05 | 8.14 | 7.78 | 12.74 | 0 | 0 | 64.59 | 65.84 | 64.98 | |
Elderly sales ratio | 40.32 | 13.01 | 14.59 | 6.64 | 4.99 | 5.46 | 14.32 | 0 | 0 | 66.14 | 37.17 | 39.77 | |
Land appraisal value | 3,637,366 | 3,896,638 | 4,365,645 | 2,337,880 | 2,525,739 | 2,855,645 | 158,100 | 163,400 | 184,700 | 22,700,000 | 24,300,000 | 27,500,000 | |
Neighbor-hood features | Commercial ratio | 5.17 | 5.17 | 5.14 | 15.62 | 15.62 | 15.60 | 0 | 0 | 0 | 99.98 | 99.98 | 99.98 |
Land use mix index | 0.13 | 0.13 | 0.13 | 0.20 | 0.20 | 0.20 | 0 | 0 | 0 | 0.84 | 0.84 | 0.84 | |
Commercial-to-housing ratio | 86.83 | 83.28 | 88.01 | 330.91 | 265.04 | 297.61 | 0 | 0 | 0 | 7365.20 | 4935.10 | 5105.10 | |
Gathering facilities | 12.28 | 12.28 | 9.58 | 7.87 | 7.87 | 6.52 | 0 | 0 | 0 | 73 | 73 | 39 | |
Park/ greenery features | Neighborhood park | 0.25 | 0.25 | 0.25 | 0.58 | 0.58 | 0.58 | 0 | 0 | 0 | 4 | 4 | 4 |
Children’s park | 2.86 | 2.86 | 2.86 | 2.37 | 2.37 | 2.37 | 0 | 0 | 0 | 14 | 14 | 14 | |
Small park | 0.09 | 0.09 | 0.09 | 0.39 | 0.39 | 0.39 | 0 | 0 | 0 | 5 | 5 | 5 | |
GVI | 17.47 | 17.47 | 17.47 | 3.72 | 3.72 | 3.72 | 9.70 | 9.70 | 9.70 | 38 | 38 | 38 | |
Commercial district features | Store density | 0.13 | 0.13 | 0.13 | 0.08 | 0.08 | 0.08 | 0.01 | 0.01 | 0.01 | 0.75 | 0.78 | 0.83 |
Closure rate | 2.76 | 2.34 | 2.80 | 2.81 | 2.56 | 3.13 | 0 | 0 | 0 | 23.05 | 19.70 | 20 | |
Commercial area | 74,591.46 | 30,266.99 | 10,579.18 | 387,983.2 | |||||||||
Mu-score | 7.74 | 7.74 | 7.74 | 0.87 | 0.87 | 0.87 | 3.76 | 3.76 | 3.76 | 10.25 | 10.25 | 10.25 | |
Dawn sales ratio | 6.15 | 5.33 | 2.49 | 3.63 | 3.10 | 1.82 | 0 | 0 | 0 | 27.87 | 21.70 | 12.65 |
Model | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAPE | R2 | RMSE | MAPE | R2 | RMSE | MAPE | |
Extra Trees Regressor | 0.4626 | 0.0008 | 0.4715 | 0.4361 | 0.0008 | 0.479 | 0.4714 | 0.0008 | 0.4658 |
Random Forest Regressor | 0.4112 | 0.0008 | 0.4597 | 0.4033 | 0.0008 | 0.4675 | 0.464 | 0.0008 | 0.4273 |
Light Gradient Boosting Machine | 0.4091 | 0.0008 | 0.46 | 0.3916 | 0.0008 | 0.5591 | 0.4586 | 0.0008 | 0.4853 |
Ridge Regression | 0.3896 | 0.0009 | 0.5236 | 0.3913 | 0.0008 | 0.5644 | 0.4537 | 0.0008 | 0.4743 |
Bayesian Ridge | 0.3886 | 0.0009 | 0.5115 | 0.3902 | 0.0008 | 0.4421 | 0.4526 | 0.0008 | 0.4377 |
Linear Regression (benchmark) | 0.3831 | 0.0009 | 0.5156 | 0.3883 | 0.0008 | 0.5574 | 0.3812 | 0.0008 | 0.5671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.W.; McCarty, D.; Jeong, M. Examining Commercial Crime Call Determinants in Alley Commercial Districts before and after COVID-19: A Machine Learning-Based SHAP Approach. Appl. Sci. 2023, 13, 11714. https://doi.org/10.3390/app132111714
Kim HW, McCarty D, Jeong M. Examining Commercial Crime Call Determinants in Alley Commercial Districts before and after COVID-19: A Machine Learning-Based SHAP Approach. Applied Sciences. 2023; 13(21):11714. https://doi.org/10.3390/app132111714
Chicago/Turabian StyleKim, Hyun Woo, Dakota McCarty, and Minju Jeong. 2023. "Examining Commercial Crime Call Determinants in Alley Commercial Districts before and after COVID-19: A Machine Learning-Based SHAP Approach" Applied Sciences 13, no. 21: 11714. https://doi.org/10.3390/app132111714
APA StyleKim, H. W., McCarty, D., & Jeong, M. (2023). Examining Commercial Crime Call Determinants in Alley Commercial Districts before and after COVID-19: A Machine Learning-Based SHAP Approach. Applied Sciences, 13(21), 11714. https://doi.org/10.3390/app132111714