How Does the Built Environment Affect Drunk-Driving Crashes? A Spatial Heterogeneity Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. The Influence of Drunk Driving Drivers
2.2. The Influence of Alcohol Outlets on Drunk Driving Crashes
2.3. Spatial Analysis for Traffic Crashes
3. Methods
3.1. Data Preparation
3.2. Spatial Correlation Test
3.3. Multiple Linear Regression Model
3.4. Geographically Weighted Poisson Regression Model
3.5. Semi-Parametric Geographically Weighted Poisson Regression Model
4. Results
4.1. Results of Moran’s I
4.2. Results of the MLR Model
4.3. Results of the GWPR Model
5. Discussion
5.1. The Spatial Heterogeneity Characteristics of Variables
5.2. Policy Implications
5.3. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stephens, A.N.; Bishop, C.A.; Liu, S.; Fitzharris, M. Alcohol Consumption Patterns and Attitudes toward Drink-Drive Behaviours and Road Safety Enforcement Strategies. Accid. Anal. Prev. 2017, 98, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, Y.; Huang, J.; Liu, Z.; Li, J.; Ma, J. Spatial Relationships between Alcohol Outlet Densities and Drunk Driving Crashes: An Empirical Study of Tianjin in China. J. Safety Res. 2020, 74, 17–25. [Google Scholar] [CrossRef]
- Navas, J.F.; Martín-pérez, C.; Petrova, D.; Verdejo-garcía, A.; Cano, M.; Sagripanti-mazuquín, O.; Perandrés-gómez, A.; López-martín, Á.; Cordovilla-guardia, S.; Megías, A.; et al. Sex Differences in the Association between Impulsivity and Driving under the Influence of Alcohol in Young Adults: The Specific Role of Sensation Seeking. Accid. Anal. Prev. 2019, 124, 174–179. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Huang, J.; Chen, N.; Lu, Y. Macrolevel Traffic Crash Analysis: A Spatial Econometric Model Approach. Math. Probl. Eng. 2019, 2019, 5306247. [Google Scholar] [CrossRef]
- Treno, A.J.; Johnson, F.W.; Remer, L.G.; Gruenewald, P.J. The Impact of Outlet Densities on Alcohol-Related Crashes: A Spatial Panel Approach. Accid. Anal. Prev. 2007, 39, 894–901. [Google Scholar] [CrossRef]
- Kuerbis, A.; Sacco, P. The Impact of Retirement on the Drinking Patterns of Older Adults: A Review. Addict. Behav. 2012, 37, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Robbins, C.J.; Russell, S.; Chapman, P. Student Drivers the Morning after Drinking: A Willingness to Violate Road Rules despite Typical Visual Attention. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 376–389. [Google Scholar] [CrossRef]
- Armstrong, K.A.; Davey, J.D.; Freeman, J.E.; Young, S.J. A Qualitative Exploration of Apprehended Women’s Experience of Drink Driving Events. Transp. Res. Part F Psychol. Behav. 2020, 69, 49–60. [Google Scholar] [CrossRef]
- Portman, M.; Penttilä, A.; Haukka, J.; Rajalin, S.; Eriksson, C.J.P.; Gunnar, T.; Koskimaa, H.; Kuoppasalmi, K. Profile of a Drunk Driver and Risk Factors for Drunk Driving. Findings in Roadside Testing in the Province of Uusimaa in Finland 1990–2008. Forensic Sci. Int. 2013, 231, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Kizhakke Veetil, D.; Ismail, D.M.; Roy, N.; Khajanchi, M.U. Drink-Driving: India Slow on Enforcement. Injury 2016, 47, 508–509. [Google Scholar] [CrossRef]
- Bachani, A.M.; Risko, C.B.; Gnim, C.; Coelho, S.; Hyder, A.A. Knowledge, Attitudes, and Practices around Drinking and Driving in Cambodia: 2010–2012. Public Health 2017, 144, S32–S38. [Google Scholar] [CrossRef]
- Alcañiz, M.; Santolino, M.; Ramon, L. Drinking Patterns and Drunk-Driving Behaviour in Catalonia, Spain: A Comparative Study. Transp. Res. Part F Traffic Psychol. Behav. 2016, 42, 522–531. [Google Scholar] [CrossRef]
- Assailly, J.P.; Cestac, J. Alcohol Interlocks and Prevention of Drunk-Driving Recidivism. Rev. Eur. Psychol. Appl. 2014, 64, 141–149. [Google Scholar] [CrossRef]
- Lee, J.A.; Jones-Webb, R.J.; Short, B.J.; Wagenaar, A.C. Drinking Location and Risk of Alcohol-Impaired Driving among High School Seniors. Addict. Behav. 1997, 22, 387–393. [Google Scholar] [CrossRef]
- Gruenewald, P.J.; Millar, A.B.; Treno, A.J.; Yang, Z.; Ponicki, W.R.; Roeper, P. The Geography of Availability and Driving after Drinking. Addiction 1996, 91, 967–983. [Google Scholar] [CrossRef]
- Curtis, A.; Coomber, K.; Hyder, S.; Droste, N.; Pennay, A.; Jenkinson, R.; Mayshak, R.; Miller, P.G. Prevalence and Correlates of Drink Driving within Patrons of Australian Night-Time Entertainment Precincts. Accid. Anal. Prev. 2016, 95, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Alonso, F.; Pastor, J.C.; Montoro, L.; Esteban, C. Driving under the Influence of Alcohol: Frequency, Reasons, Perceived Risk and Punishment. Subst. Abuse Treat. Prev. Policy 2015, 10, 11. [Google Scholar] [CrossRef]
- Campbell, C.A.; Hahn, R.A.; Elder, R.; Brewer, R.; Chattopadhyay, S.; Fielding, J.; Naimi, T.S.; Toomey, T.; Lawrence, B.; Middleton, J.C. The Effectiveness of Limiting Alcohol Outlet Density as a Means of Reducing Excessive Alcohol Consumption and Alcohol-Related Harms. Am. J. Prev. Med. 2009, 37, 556–569. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.; Patton, D. Examining Spatial Relationships between Crashes and the Built Environment: A Geographically Weighted Regression Approach. J. Transp. Geogr. 2018, 69, 221–233. [Google Scholar] [CrossRef]
- Niederdeppe, J.; Avery, R.; Miller, E.N. Alcohol-Control Public Service Announcements (PSAs) and Drunk-Driving Fatal Accidents in the United States, 1996–2010. Prev. Med. 2017, 99, 320–325. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Sahebi, S.; Hasanah, Z.; Shukri, A. Predicting Crash Frequency for Multi-Vehicle Collision Types Using Multivariate Poisson-Lognormal Spatial Model: A Comparative Analysis. Accid. Anal. Prev. 2018, 118, 277–288. [Google Scholar] [CrossRef]
- Zeng, Q.; Huang, H.; Pei, X.; Wong, S.C.; Gao, M. Rule Extraction from an Optimized Neural Network for Traffic Crash Frequency Modeling. Accid. Anal. Prev. 2016, 97, 87–95. [Google Scholar] [CrossRef]
- Huang, H.; Chin, H.C. Modeling Road Traffic Crashes with Zero-Inflation and Site-Specific Random Effects. Stat. Methods Appl. 2010, 19, 445–462. [Google Scholar] [CrossRef]
- Cai, Q.; Lee, J.; Eluru, N.; Abdel-Aty, M. Macro-Level Pedestrian and Bicycle Crash Analysis: Incorporating Spatial Spillover Effects in Dual State Count Models. Accid. Anal. Prev. 2016, 93, 14–22. [Google Scholar] [CrossRef]
- Li, Y.C.; Sze, N.N.; Wong, S.C. Spatial-Temporal Analysis of Drink-Driving Patterns in Hong Kong. Accid. Anal. Prev. 2013, 59, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, X.; Abdel-aty, M.; Tremont, P.J. Investigation of Road Network Features and Safety Performance. Accid. Anal. Prev. 2013, 56, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Greene, K.M.; Murphy, S.T.; Rossheim, M.E. Context and Culture: Reasons Young Adults Drink and Drive in Rural America. Accid. Anal. Prev. 2018, 121, 194–201. [Google Scholar] [CrossRef]
- Armstrong, K.A.; Watling, H.; Watson, A.; Davey, J. Profile of Urban vs Rural Drivers Detected Drink Driving via Roadside Breath Testing (RBT) in Queensland, Australia, between 2000 and 2011. Transp. Res. Part F Traffic Psychol. Behav. 2017, 47, 114–121. [Google Scholar] [CrossRef]
- Bao, J.; Liu, P.; Yu, H.; Xu, C. Incorporating Twitter-Based Human Activity Information in Spatial Analysis of Crashes in Urban Areas. Accid. Anal. Prev. 2017, 106, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhou, Y.; Jin, S.; Wang, D. Spatiotemporal Influence of Land Use and Household Properties on Automobile Travel Demand. Transp. Res. Part D 2020, 84, 102359. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, S.; Li, T.; Niu, S.; Tang, K. Exploring Spatial Variation of the Bus Stop in Fl Uence Zone with Multi-Source Data: A Case Study in Zhenjiang, China. J. Transp. Geogr. 2019, 76, 166–177. [Google Scholar] [CrossRef]
- Bai, X.; Zhai, W.; Steiner, R.L.; He, Z. Exploring Extreme Commuting and Its Relationship to Land Use and Socioeconomics in the Central Puget Sound. Transp. Res. Part D 2020, 88, 102574. [Google Scholar] [CrossRef]
- Ibeas, Á.; Cordera, R.; Coppola, P.; Dominguez, A. Modelling Transport and Real-Estate Values Interactions in Urban Systems. J. Transp. Geogr. 2012, 24, 370–382. [Google Scholar] [CrossRef]
- Hadayeghi, A.; Shalaby, A.S.; Persaud, B.N. Development of Planning Level Transportation Safety Tools Using Geographically Weighted Poisson Regression. Accid. Anal. Prev. 2010, 42, 676–688. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Lin, R. Spatial-Temporal Heterogeneity of Air Pollution: The Relationship between Built Environment and on-Road PM2.5 at Micro Scale. Transp. Res. Part D 2019, 76, 305–322. [Google Scholar] [CrossRef]
- Xu, P.; Huang, H. Modeling Crash Spatial Heterogeneity: Random Parameter versus Geographically Weighting. Accid. Anal. Prev. 2015, 75, 16–25. [Google Scholar] [CrossRef]
- Calvo, F.; Eboli, L.; Forciniti, C.; Mazzulla, G. Factors in Fl Uencing Trip Generation on Metro System in Madrid. Transp. Res. Part D 2019, 67, 156–172. [Google Scholar] [CrossRef]
Category | Variables | Definition | Mean | Minimum | Maximum | VIF |
---|---|---|---|---|---|---|
Explained variable | Crash_den | Number of alcohol-related crashes per square kilometer | 0.36 | 0.00 | 4.41 | - |
Explanatory variables | Pop_den | People per square kilometer | 7.02 | −0.69 | 11.42 | 1.89 |
Retail_den | Number of retail stores per square kilometer | 1.35 | −5.00 | 8.10 | 7.29 | |
Entertainment_den | Number of entertainment places per square kilometer | 0.78 | −4.85 | 5.82 | 6.56 | |
Restaurant_den | Number of restaurants per square kilometer | 0.97 | −4.88 | 6.89 | 8.72 | |
Company_den | Number of companies per square kilometer | 1.68 | −3.36 | 5.15 | 2.40 | |
Hotel_den | Number of hotels per square kilometer | 0.22 | −4.64 | 4.14 | 2.04 | |
Residential_den | Number of residences per square kilometer | 0.78 | −4.85 | 5.16 | 3.97 | |
Intersection_den | Number of Intersection per square kilometer | 1.34 | −4.33 | 4.64 | 4.50 | |
Road_den | Length of road per square kilometer | 0.81 | −6.75 | 3.10 | 3.70 |
Variables | Moran’s I | Pattern | Z-Score | p-Value |
---|---|---|---|---|
Crash_den | 0.331 | Clustered | 22.807 | 0.001 |
Pop_den | 0.752 | Clustered | 51.732 | 0.001 |
Retail_den | 0.718 | Clustered | 61.454 | 0.001 |
Entertainment_den | 0.702 | Clustered | 48.280 | 0.001 |
Restaurant_den | 0.722 | Clustered | 49.638 | 0.001 |
Company_den | 0.880 | Clustered | 60.558 | 0.001 |
Hotel_den | 0.487 | Clustered | 33.529 | 0.001 |
Residential_den | 0.728 | Clustered | 50.105 | 0.001 |
Intersection_den | 0.656 | Clustered | 45.090 | 0.001 |
Road_den | 0.574 | Clustered | 39.512 | 0.001 |
Variables | Coefficients | t-Statistic | p-Value |
---|---|---|---|
Pop_den | 0.193 | 7.779 | 0.001 |
Retail_den | 0.483 | 9.918 | 0.001 |
Entertainment_den | −0.018 | −0.381 | 0.704 |
Restaurant_den | 0.006 | 0.110 | 0.913 |
Company_den | −0.680 | −24.348 | 0.001 |
Hotel_den | −0.108 | −4.190 | 0.001 |
Residential_den | −0.105 | −2.911 | 0.004 |
Intersection_den | 0.074 | 1.927 | 0.048 |
Road_den | 0.103 | 2.959 | 0.003 |
Model | MLR | GWPR | GWPR | SGWPR | |||
---|---|---|---|---|---|---|---|
Kernel Functions | - | Adaptive Bi-Square | Adaptive Gaussian | Adaptive Bi-Square | Adaptive Gaussian | Adaptive Bi-Square | Adaptive Gaussian |
Best bandwidth size | - | 1386 | 215 | 1172 | 147 | 303.14 | 237.62 |
AICc | 1385.20 | 1355.79 | 1350.56 | 1348.00 | 1339.52 | 1312.80 | 1307.91 |
Number of variables | 9 | 9 | 9 | 7 | 7 | 7 | 7 |
Global Variables | All variables | - | - | Other Explanatory variables | Residential_den Intersection_den | ||
Local Variables | All Explanatory variables | All Explanatory variables except Entertainment_den and Restaurant_den | Company_den | Other Explanatory variables |
Variable | Mean | Min | Max | Robust STD |
---|---|---|---|---|
Intercept | −1.549 | −2.225 | −1.073 | 0.256 |
Population_den | 0.397 | −0.048 | 0.606 | 0.099 |
Retail_den | 0.516 | 0.129 | 0.894 | 0.141 |
Hotel_den | 0.027 | −0.190 | 0.576 | 0.060 |
Company_den | −1.421 | −1.809 | −0.677 | 0.222 |
Road_den | 0.109 | −0.080 | 0.308 | 0.128 |
Variable | Estimate | Standard Error | z(Estimate/SE) |
---|---|---|---|
Residential_den | 0.094 | 3.036 | 0.031 |
Intersection_den | 0.415 | 3.472 | 0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Liu, J.; Chen, N.; Xiao, J.; Wei, P. How Does the Built Environment Affect Drunk-Driving Crashes? A Spatial Heterogeneity Analysis. Appl. Sci. 2023, 13, 11813. https://doi.org/10.3390/app132111813
Wang S, Liu J, Chen N, Xiao J, Wei P. How Does the Built Environment Affect Drunk-Driving Crashes? A Spatial Heterogeneity Analysis. Applied Sciences. 2023; 13(21):11813. https://doi.org/10.3390/app132111813
Chicago/Turabian StyleWang, Shaohua, Jianzhen Liu, Ning Chen, Jinjian Xiao, and Panyi Wei. 2023. "How Does the Built Environment Affect Drunk-Driving Crashes? A Spatial Heterogeneity Analysis" Applied Sciences 13, no. 21: 11813. https://doi.org/10.3390/app132111813
APA StyleWang, S., Liu, J., Chen, N., Xiao, J., & Wei, P. (2023). How Does the Built Environment Affect Drunk-Driving Crashes? A Spatial Heterogeneity Analysis. Applied Sciences, 13(21), 11813. https://doi.org/10.3390/app132111813