A Prediction-to-Prediction Remote Sensing Image Super-Resolution Network under a Multi-Level Supervision Paradigm
Abstract
:1. Introduction
- (1)
- A multi-level supervision structure was proposed and multi-level supervision images were applied to the output of each component to increase the guidance in the super-resolution progress and reduce the ill-posedness.
- (2)
- A basic super-resolution component with adjustable scale factor was designed to enable the construction of different multi-level supervision network-like building blocks.
- (3)
- In the progressive structure, both the number of components and the scale factor of each component had an impact on the performance of the network. A method for dividing the super-resolution overall scale factor was proposed to obtain the best combination of BSRCs.
2. Related Work
2.1. Super-Resolution Methods
2.2. The Ill-Posedness of Super Resolution
2.3. Progressive Structure for Super Resolution
3. Methods
3.1. Multi-Level Supervision Super-Resolution Network
3.2. Basic Super-Resolution Component
3.3. The Scale Factor Division Method
3.4. Loss Function
4. Experiments
4.1. Dataset and Settings
4.2. Comparison with State-of-the-Art Methods
4.3. Ablation Study
4.3.1. Multi-Level Supervision
4.3.2. Scale Factor of Each Component
4.3.3. Loss Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, Y.; Zhang, Y.; Cen, Y.; Li, Y.; Mladenovic, V.; Voronin, V. Pedestrian detection with super-resolution reconstruction for low-quality image. Pattern Recognit. 2021, 115, 107846. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.; Zhu, Y.; Tian, L.; Shan, Y. Dual super-resolution learning for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3774–3783. [Google Scholar]
- Ibragimov, B.; Prince, J.L.; Murano, E.Z.; Woo, J.; Stone, M.; Likar, B.; Pernuš, F.; Vrtovec, T. Segmentation of tongue muscles from super-resolution magnetic resonance images. Med. Image Anal. 2015, 20, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Shermeyer, J.; Van Etten, A. The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Zou, Z.; Shi, Z. Ship detection in spaceborne optical image with SVD networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5832–5845. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Wang, X. Learning continuous image representation with local implicit image function. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8628–8638. [Google Scholar]
- Lei, S.; Shi, Z.; Wu, X.; Pan, B.; Xu, X.; Hao, H. Simultaneous super-resolution and segmentation for remote sensing images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3121–3124. [Google Scholar]
- Wang, Y.; Bashir, S.M.A.; Khan, M.; Ullah, Q.; Wang, R.; Song, Y.; Guo, Z.; Niu, Y. Remote sensing image super-resolution and object detection: Benchmark and state of the art. Expert Syst. Appl. 2022, 197, 116793. [Google Scholar] [CrossRef]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Li, J.; Pei, Y.; Zhao, S.; Xiao, R.; Sang, X.; Zhang, C. A review of remote sensing for environmental monitoring in China. Remote Sens. 2020, 12, 1130. [Google Scholar] [CrossRef]
- Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. 2009, 33, 183–207. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, S.; Barnes, N. A deep journey into super-resolution: A survey. ACM Comput. Surv. (CSUR) 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hoi, S.C. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3365–3387. [Google Scholar] [CrossRef]
- Chen, H.; He, X.; Qing, L.; Wu, Y.; Ren, C.; Sheriff, R.E.; Zhu, C. Real-world single image super-resolution: A brief review. Inf. Fusion 2022, 79, 124–145. [Google Scholar] [CrossRef]
- Fernandez-Beltran, R.; Latorre-Carmona, P.; Pla, F. Single-frame super-resolution in remote sensing: A practical overview. Int. J. Remote Sens. 2017, 38, 314–354. [Google Scholar] [CrossRef]
- Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth-Sci. Rev. 2022, 232, 104110. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1646–1654. [Google Scholar]
- Lugmayr, A.; Danelljan, M.; Van Gool, L.; Timofte, R. Srflow: Learning the super-resolution space with normalizing flow. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020,; Proceedings, Part V 16; Springer: Berlin, Germany, 2020; pp. 715–732. [Google Scholar]
- Kim, Y.; Son, D. Noise conditional flow model for learning the super-resolution space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 424–432. [Google Scholar]
- Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Xu, Y.; Tan, M. Closed-loop matters: Dual regression networks for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5407–5416. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part IV 13; Springer: Berlin, Germany, 2014; pp. 184–199. [Google Scholar]
- Mao, X.J.; Shen, C.; Yang, Y.B. Image restoration using convolutional auto-encoders with symmetric skip connections. arXiv 2016, arXiv:1606.08921. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1874–1883. [Google Scholar]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14; Springer: Berlin, Germany, 2016; pp. 391–407. [Google Scholar]
- Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma, S.; Xu, C.; Xu, C.; Gao, W. Pre-Trained Image Processing Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 12299–12310. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Montreal, BC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar]
- Lu, Z.; Li, J.; Liu, H.; Huang, C.; Zhang, L.; Zeng, T. Transformer for Single Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, New Orleans, LA, USA, 18–24 June 2022; pp. 457–466. [Google Scholar]
- Liebel, L.; Körner, M. Single-image super resolution for multispectral remote sensing data using convolutional neural networks. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 883–890. [Google Scholar] [CrossRef]
- Tuna, C.; Unal, G.; Sertel, E. Single-frame super resolution of remote-sensing images by convolutional neural networks. Int. J. Remote Sens. 2018, 39, 2463–2479. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Z.; Zou, Z. Super-resolution for remote sensing images via local–global combined network. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 1243–1247. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Z.; Yi, P.; Jiang, J.; Xiao, J.; Yao, Y. Deep distillation recursive network for remote sensing imagery super-resolution. Remote Sens. 2018, 10, 1700. [Google Scholar] [CrossRef]
- Hu, J.F.; Huang, T.Z.; Deng, L.J.; Dou, H.X.; Hong, D.; Vivone, G. Fusformer: A transformer-based fusion network for hyperspectral image super-resolution. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Tu, J.; Mei, G.; Ma, Z.; Piccialli, F. SWCGAN: Generative adversarial network combining swin transformer and CNN for remote sensing image super-resolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5662–5673. [Google Scholar] [CrossRef]
- An, T.; Zhang, X.; Huo, C.; Xue, B.; Wang, L.; Pan, C. TR-MISR: Multiimage super-resolution based on feature fusion with transformers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1373–1388. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Z.; Mo, W. Transformer-Based Multistage Enhancement for Remote Sensing Image Super-Resolution. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 5615611. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Image super-resolution via progressive cascading residual network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018; pp. 791–799. [Google Scholar]
- Nathan, S.; Kansal, P. Leveraging multi scale backbone with multilevel supervision for thermal image super resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4332–4338. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the European Conference on Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14; Springer: Berlin, Germnay, 2016; pp. 694–711. [Google Scholar]
- Tang, Z.; Luo, L.; Xie, B.; Zhu, Y.; Zhao, R.; Bi, L.; Lu, C. Automatic sparse connectivity learning for neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7350–7364. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q. Weight-quantized squeezenet for resource-constrained robot vacuums for indoor obstacle classification. AI 2022, 3, 180–193. [Google Scholar] [CrossRef]
- Hu, W.; Che, Z.; Liu, N.; Li, M.; Tang, J.; Zhang, C.; Wang, J. Channel Pruning via Class-Aware Trace Ratio Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2023. [Google Scholar] [CrossRef] [PubMed]
- Hsia, C.H.; Lee, Y.H.; Lai, C.F. An Explainable and Lightweight Deep Convolutional Neural Network for Quality Detection of Green Coffee Beans. Appl. Sci. 2022, 12, 10966. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 586–595. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Tian, C.; Yuan, Y.; Zhang, S.; Lin, C.W.; Zuo, W.; Zhang, D. Image super-resolution with an enhanced group convolutional neural network. Neural Netw. 2022, 153, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef]
Method | Parameters | Metrics | UCMerced Dataset [47] | AID Dataset [48] | Our Datasets | |||
---|---|---|---|---|---|---|---|---|
SRGAN [36] | 1.6 M | PSNR (dB) | 32.59 | 26.26 | 31.54 | 26.18 | 29.04 | 23.50 |
SSIM | 0.9302 | 0.8663 | 0.9276 | 0.8647 | 0.9168 | 0.7549 | ||
RDN [44] | 22.1 M | PSNR (dB) | 32.82 | 26.63 | 31.60 | 26.06 | 29.17 | 23.27 |
SSIM | 0.9695 | 0.8577 | 0.9444 | 0.8632 | 0.9103 | 0.7615 | ||
RCAN [45] | 15.5 M | PSNR (dB) | 32.63 | 27.27 | 32.08 | 26.54 | 29.55 | 23.82 |
SSIM | 0.9556 | 0.8616 | 0.9489 | 0.8620 | 0.9323 | 0.7745 | ||
DRN [20] | 9.8 M | PSNR (dB) | 33.11 | 27.64 | 32.18 | 27.12 | 29.04 | 24.37 |
SSIM | 0.9635 | 0.8743 | 0.9447 | 0.8830 | 0.9376 | 0.7853 | ||
TransENet [35] | 37.3 M | PSNR (dB) | 33.51 | 27.91 | 32.90 | 27.36 | 30.29 | 24.63 |
SSIM | 0.9704 | 0.8887 | 0.9592 | 0.8787 | 0.9490 | 0.7896 | ||
SwinIR [26] | 11.6 M | PSNR (dB) | 33.62 | 27.73 | 33.08 | 27.55 | 30.45 | 25.05 |
SSIM | 0.9606 | 0.8824 | 0.9609 | 0.8965 | 0.9544 | 0.7992 | ||
ESRGCNN [46] | 1.2 M | PSNR (dB) | 34.23 | 28.04 | 33.07 | 27.43 | 30.57 | 25.31 |
SSIM | 0.9668 | 0.9016 | 0.9636 | 0.9003 | 0.9580 | 0.7971 | ||
P2P-SR (Ours) | 7.3 M | PSNR (dB) | 34.62 | 28.39 | 33.37 | 28.02 | 31.52 | 26.84 |
SSIM | 0.9728 | 0.8951 | 0.9705 | 0.9105 | 0.9648 | 0.8079 |
Method | Parameters | FLOPS (×4) |
---|---|---|
SRGAN | 1.6 M | 83.6 G |
RDN | 22.1 M | 769.3 G |
RCAN | 15.5 M | 537.5 G |
DRN | 9.8 M | 269.2 G |
TransENet | 37.3 M | 1120.1 G |
SwinIR | 11.6 M | 307.6 G |
ESRGCNN | 1.2 M | 67.6 G |
P2P-SR (Ours) | 2.1 M | 86.6 G |
Methods | PSNR (dB) | SSIM |
---|---|---|
24.19 | 0.7804 | |
24.65 | 0.7877 | |
25.99 | 0.7917 | |
26.84 | 0.8079 |
Methods | PSNR (dB) | SSIM |
---|---|---|
26.23 | 0.7928 | |
26.59 | 0.7976 | |
26.76 | 0.7986 | |
26.84 | 0.8079 |
Loss Function | PSNR (dB) | SSIM |
---|---|---|
Loss | 25.48 | 0.7821 |
Perceptual Loss | 25.21 | 0.7908 |
Perceptual Loss + Loss | 26.39 | 0.7934 |
Cross-level Loss | 26.84 | 0.8079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Li, M.; Zhao, Q.; Xu, Q. A Prediction-to-Prediction Remote Sensing Image Super-Resolution Network under a Multi-Level Supervision Paradigm. Appl. Sci. 2023, 13, 11827. https://doi.org/10.3390/app132111827
Guo J, Li M, Zhao Q, Xu Q. A Prediction-to-Prediction Remote Sensing Image Super-Resolution Network under a Multi-Level Supervision Paradigm. Applied Sciences. 2023; 13(21):11827. https://doi.org/10.3390/app132111827
Chicago/Turabian StyleGuo, Jian, Mingkai Li, Qingjie Zhao, and Qizhi Xu. 2023. "A Prediction-to-Prediction Remote Sensing Image Super-Resolution Network under a Multi-Level Supervision Paradigm" Applied Sciences 13, no. 21: 11827. https://doi.org/10.3390/app132111827
APA StyleGuo, J., Li, M., Zhao, Q., & Xu, Q. (2023). A Prediction-to-Prediction Remote Sensing Image Super-Resolution Network under a Multi-Level Supervision Paradigm. Applied Sciences, 13(21), 11827. https://doi.org/10.3390/app132111827