Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calorimetry
2.2. Radiochromic Film
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ECIS—European Cancer Information System. Available online: https://ecis.jrc.ec.europa.eu (accessed on 10 October 2020).
- Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [PubMed]
- Jelonek, K.; Pietrowska, M.; Widlak, P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: The influence of inflammation and radiation toxicity. Int. J. Radiat. Biol. 2017, 93, 683–696. [Google Scholar] [PubMed]
- Patriarca, A.; Fouillade, C.; Auger, M.; Martin, F.; Pouzoulet, F.; Nauraye, C.; Heinrich, S.; Favaudon, V.; Meyroneinc, S.; Dendale, R.; et al. Experimental set-up for FLASH proton irradiation of small animals using a clinical system. Int. J. Radiat. Oncol. 2018, 102, 619–626. [Google Scholar]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar]
- Loo, B.W.; Schuler, E.; Lartey, F.M.; Rafat, M.; King, G.J.; Trovati, S.; Koong, A.C.; Maxim, P.G. Delivery of ultra-rapid flash radiation therapy and demonstration of normal tissue sparing after abdominal irradiation of mice. Int. J. Radiat. Oncol. 2017, 98, E16. [Google Scholar] [CrossRef]
- Kraft, S.D.; Richter, C.; Zeil, K.; Baumann, M.; Beyreuther, E.; Bock, S.; Bussmann, M.; Cowan, T.E.; Dammene, Y.; Enghardt, W.; et al. Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New J. Phys. 2010, 12, 085003. [Google Scholar]
- Zeil, K.; Baumann, M.; Beyreuther, E.; Burris-Mog, T.; Cowan, T.E.; Enghardt, W.; Karsch, L.; Kraft, S.D.; Laschinsky, L.; Metzkes, J.; et al. Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses. Appl. Phys. B 2013, 110, 437–444. [Google Scholar]
- Hanton, F.; Chaudhary, P.; Doria, D.; Gwynne, D.; Maiorino, C.; Scullion, C.; Ahmed, H.; Marshall, T.; Naughton, K.; Ro-magnani, L.; et al. DNA DSB repair dynamics following irradiation with laser-driven protons at ultra-high dose rates. Sci. Rep. 2019, 9, 4471. [Google Scholar] [PubMed]
- Ledingham, K.W.D.; Bolton, P.R.; Shikazono, N.; Ma, C.M.C. Towards laser driven hadron cancer radiotherapy: A review of progress. Appl. Sci. 2014, 4, 402–443. [Google Scholar]
- Macchi, A.; Borghesi, M.; Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 2013, 85, 751–793. [Google Scholar]
- Higginson, A.; Gray, R.J.; King, M.; Dance, R.J.; Williamson, S.D.R.; Butler, N.M.H.; Wilson, R.; Capdessus, R.; Armstrong, C.; Green, J.S.; et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun. 2018, 9, 724. [Google Scholar] [CrossRef] [PubMed]
- Consoli, F.; Tikhonchuk, V.T.; Bardon, M.; Bradford, P.; Carroll, D.C.; Cikhardt, J.; Cipriani, M.; Clarke, R.J.; Cowan, T.E.; Danson, C.N.; et al. Laser produced electromagnetic pulses: Generation, detection and mitigation. High Power Laser Sci. Eng. 2020, 8, E22. [Google Scholar] [CrossRef]
- Lee, E.; Lourenço, A.M.; Speth, J.; Lee, N.; Subiel, A.; Romano, F.; Thomas, R.; Amos, R.A.; Zhang, Y.; Xiao, Z.; et al. Ultrahigh dose rate pencil beam scanning proton dosimetry using ion chambers and a calorimeter in support of first in-human FLASH clinical trial. Med. Phys. 2022, 49, 6171–6182. [Google Scholar] [CrossRef] [PubMed]
- UHDPulse: Metrology for Advanced Radiotherapy Using Particle Beams with Ultra-High Pulse Dose Rates. Available online: http://uhdpulse-empir.eu (accessed on 30 July 2023).
- Subiel, A.; Moskvin, V.; Welsh, G.H.; Cipiccia, S.; Reboredo, D.; DesRosiers, C.; Jaroszynski, D.A. Challenges of dosimetry of ultra-short pulsed very high energy electron beams. Phys. Med. 2017, 42, 327–331. [Google Scholar] [CrossRef] [PubMed]
- McManus, M.; Romano, F.; Lee, N.D.; Farabolini, W.; Gilardi, A.; Royle, G.; Palmans, H.; Subiel, A. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams. Sci. Rep. 2020, 10, 9089. [Google Scholar] [CrossRef]
- Romano, F.; Subiel, A.; McManus, M.; Lee, N.D.; Palmans, H.; Thomas, R.; McCallum, S.; Milluzzo, G.; Borghesi, M.; McIlvenny, A.; et al. Challenges in dosimetry of particle beams with ultra-high pulse dose rates. J. Phys. Conf. Ser. 2020, 1662, 012028. [Google Scholar] [CrossRef]
- Scuderi, V.; Amato, A.; Amico, A.G.; Borghesi, M.; Cirrone, G.A.P.; Cuttone, G.; Fajstavr, A.; Giuffrida, L.; Grepl, F.; Korn, G.; et al. Diagnostics and Dosimetry Solutions for Multidisciplinary Applications at the ELIMAIA Beamline. Appl. Sci. 2018, 8, 1415. [Google Scholar] [CrossRef]
- Richter, C.; Karsch, L.; Dammene, Y.; Kraft, S.D.; Metzkes, J.; Schramm, U.; Schürer, M.; Sobiella, M.; Weber, A.; Zeil, K.; et al. A dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons. Phys. Med. Biol. 2011, 56, 1529–1543. [Google Scholar] [CrossRef]
- Pommarel, L.; Vauzour, B.; Mégnin-Chanet, F.; Bayart, E.; Delmas, O.; Goudjil, F.; Nauraye, C.; Letellier, V.; Pouzoulet, F.; Schillaci, F.; et al. Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments. Phys. Rev. Accel. Beams 2017, 20, 032801. [Google Scholar] [CrossRef]
- Fiorini, F.; Kirby, D.; Borghesi, M.; Doria, D.; Jeynes, J.C.G.; Kakolee, K.F.; Kar, S.; Litt, S.K.; Kirkby, K.J.; Merchant, M.J.; et al. Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams. Phys. Med. Biol. 2011, 56, 6969–6982. [Google Scholar] [CrossRef]
- Bourgouin, A.; Cojocaru, C.; Ross, C.; McEwen, M. Determination of Wair in high-energy electron beams using graphite detectors. Med. Phys. 2019, 46, 5195–5208. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.; Marchington, D.; Seuntjens, J.; Sarfehnia, A. Development of a graphite probe calorimeter for absolute clinical dosimetry. Med. Phys. 2013, 40, 020701. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.; Sarfehnia, A.; Bancheri, J.; Seuntjens, J. Aerrow: A probe-format graphite calorimeter for absolute dosimetry of high-energy photon beams in the clinical environment. Med. Phys. 2018, 45, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Bourgouin, A.; Keszti, F.; Schönfeld, A.A.; Hackel, T.; Kozelka, J.; Hildreth, J.; Simon, W.; Schüller, A.; Kapsch, R.P.; Renaud, J. The probe-format graphite calorimeter, Aerrow, for absolute dosimetry in ultrahigh pulse dose rate electron beams. Med. Phys. 2020, 49, 6635–6645. [Google Scholar] [CrossRef]
- Bass, G.A.; Shipley, D.R.; Flynn, S.F.; Thomas, R.A. A prototype low-cost secondary standard calorimeter for reference dosimetry with ultra-high pulse dose rates. Br. J. Radiol. 2023, 96, 20220638. [Google Scholar] [CrossRef]
- McEwen, M.R.; DuSautoy, A.R. Primary standards of absorbed dose for electron beams. Metrologica 2009, 46, S59–S79. [Google Scholar] [CrossRef]
- Seuntjens, J.; Duane, S. Photon absorbed dose standards. Metrologica 2009, 46, S39–S58. [Google Scholar] [CrossRef]
- Rossomme, S.; Palmans, H.; Thomas, R.; Lee, N.; Duane, S.; Bailey, M.; Shipley, D.; Bertrand, D.; Romano, F.; Cirrone, P.; et al. Reference dosimetry for light-ion beams based on graphite calorimetry. Radiat. Prot. Dosim. 2014, 161, 92–95. [Google Scholar] [CrossRef]
- Palmans, H.; Thomas, R.; Simon, M.; Duane, S.; Kacperek, A.; DuSautoy, A.; Verhaegen, F. A small-body portable graphite calorimeter for dosimetry in low-energy clinical proton beams. Phys. Med. Biol. 2004, 49, 3737–3749. [Google Scholar] [CrossRef]
- Sander, T.; Duane, S.; Lee, N.D.; Thomas, C.G.; Owen, P.J.; Bailey, M.; Palmans, H. NPL’s new absorbed dose standard for the calibration of HDR 192Ir brachytherapy sources. Metrologia 2012, 49, S184–S188. [Google Scholar] [CrossRef]
- Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H. An absorbed dose calorimeter for IMRT dosimetry. Metrologia 2012, 49, S168–S173. [Google Scholar] [CrossRef]
- Lourenço, A.; Lee, N.; Shipley, D.; Romano, F.; Kacperek, A.; Duane, S.; Cashmore, M.; Bass, G.; Palmans, H.; Thomas, R. Application of a portable primary standard level graphite calorimeter for absolute dosimetry in a clinical low-energy passively scattered proton beam. Phys. Med. Biol. 2022, 67, 225021. [Google Scholar] [CrossRef] [PubMed]
- Schüller, A.; Heinrich, S.; Fouillade, C.; Subiel, A.; De Marzi, L.; Romano, F.; Peier, P.; Trachsel, M.; Fleta, C.; Kranzer, R.; et al. The European Joint Research Project UHDpulse–Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Phys. Medica 2020, 80, 134–150. [Google Scholar]
- McEwen, M.R.; Duane, S. A portable calorimeter for measuring absorbed dose in the radiotherapy clinic. Phys. Med. Biol. 2000, 45, 3675–3691. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Gwynne, D.C.; Odlozilik, B.; McMurray, A.; Milluzzo, G.; Maiorino, C.; Doria, D.; Ahmed, H.; Romagnani, L.; Alejo, A.; et al. Development of a portable hypoxia chamber for ultra-high dose rate laser-driven proton radiobiology applications. Radiat. Oncol. 2022, 17, 77. [Google Scholar]
- Available online: http://www.gafchromic.com/ (accessed on 15 July 2019).
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.J.N.I.; et al. Recent developments in Geant4. Nucl. Instrum. Methods A 2016, 835, 186–225. [Google Scholar]
- Allison, J.; Amako, K.; Apostolakis, J.E.A.; Araujo, H.A.A.H.; Dubois, P.A.; Asai, M.A.A.M.; Barrand, G.A.B.G.; Capra, R.A.C.R.; Chauvie, S.A.C.S.; Chytracek, R.A.C.R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A Simulation Toolkit. Nucl. Instrum. Methods A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Available online: https://lise.nscl.msu.edu/lise.html (accessed on 15 July 2019).
- Borca, J.; Pasquino, M.; Russo, G.; Grosso, P.; Cante, D.; Sciacero, P.; Girelli, G.; La Porta, M.R.; Tofani, S. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. J. Appl. Clin. Med. Phys. 2013, 14, 158–171. [Google Scholar] [CrossRef]
- Epson Electronics. Available online: https://www.epson.co.uk/en_GB (accessed on 10 October 2020).
- ImageJ: Image Processing and Analysis in Java. Available online: https://imagej.nih.gov/ij/download.html (accessed on 10 October 2020).
- Perl, J.; Shin, J.; Schümann, J.; Faddegon, B.; Paganetti, H. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications. Med. Phys. 2012, 39, 6818–6837. [Google Scholar] [CrossRef]
- Faddegon, B.; Ramos-Méndez, J.; Schuemann, J.; McNamara, A.; Shin, J.; Perl, J.; Paganetti, H. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys. Med. 2020, 72, 114–121. [Google Scholar] [PubMed]
Shot 1 | Shot 2 | Shot 3 | Shot 4 | |
---|---|---|---|---|
Target Material | 15 µm Au | 1 µm CH plastic | 15 µm Au | 15 µm Au + lead absorber |
Mean dose to core | 2.03 | 1.05 | 1.65 | 0.41 |
Standard deviation (Gy) | 0.0152 | 0.0075 | 0.0179 | 0.0046 |
SDOM (%) | 0.4319 | 0.4121 | 0.6254 | 0.6565 |
RCF dose (Gy) | 3.53 | 2.75 | 2.99 | 1.00 |
Dose decrease (RCF–SPGC, %) | 42.3 | 61.9 | 44.8 | 59.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCallum, S.; Lee, N.; Milluzzo, G.; McIlvenny, A.; Borghesi, M.; Subiel, A.; Romano, F. Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams. Appl. Sci. 2023, 13, 11894. https://doi.org/10.3390/app132111894
McCallum S, Lee N, Milluzzo G, McIlvenny A, Borghesi M, Subiel A, Romano F. Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams. Applied Sciences. 2023; 13(21):11894. https://doi.org/10.3390/app132111894
Chicago/Turabian StyleMcCallum, Sean, Nigel Lee, Giuliana Milluzzo, Aodhan McIlvenny, Marco Borghesi, Anna Subiel, and Francesco Romano. 2023. "Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams" Applied Sciences 13, no. 21: 11894. https://doi.org/10.3390/app132111894
APA StyleMcCallum, S., Lee, N., Milluzzo, G., McIlvenny, A., Borghesi, M., Subiel, A., & Romano, F. (2023). Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams. Applied Sciences, 13(21), 11894. https://doi.org/10.3390/app132111894