An Experimental Study on the Effect of Magmatic Thermal Evolution on the Molecular Structure of Low-Rank Coal
Abstract
:1. Introduction
2. Coal Samples and Experiment Methods
2.1. Coal Samples
2.2. Proximate Analysis and Ultimate Analysis
2.3. X-ray Diffraction Analysis
2.4. Raman Spectroscopy Analysis
2.5. FTIR Spectroscopy Analysis
3. Results and Discussion
3.1. Chemical Properties of Experimental Coal Samples
3.2. Effect of Thermal Evolution on the XRD Microcrystalline Structure of Coal
3.3. Effect of Thermal Evolution on Raman Spectra of Coal
3.4. Influence of Thermal Evolution on FTIR spectroscopy Characteristics of Functional Groups in Coal
4. Conclusions
- (1)
- Based on the proximate analysis, it is evident that the thermal evolution caused by magmatic activity leads to an increase in coal ash content while reducing the moisture and volatile content. The results obtained from the ultimate analysis indicate that the magmatic thermal evolution coal sample exhibits a high aromaticity rate.
- (2)
- X-ray diffraction experiments revealed that magmatic thermal evolution possesses the capability to elevate the aromatization of low-rank coals and foster the advancement of their microcrystalline structure. Moreover, the magmatic thermal evolution coal samples exhibited reduced d002 values, approaching the aromatic interlayer spacing observed in graphite crystals. This implies that the magmatic thermal evolution process promotes the coalification or carbonization of low-rank coal.
- (3)
- The Raman spectroscopy experiments show that magmatic thermal evolution promotes the generation of ordered structures in low-rank coals. The ID1/IG and FD1/FG values of magmatic thermal evolution coal samples are smaller than those of normal coal samples, which indicates that there are less disordered structures and more ordered structures in magmatic thermal evolution coal samples affected by magma intrusion compared with normal coal samples.
- (4)
- FTIR spectroscopy analysis demonstrates that magmatic thermal evolution possesses the ability to deoxygenate the coal samples and augment their carbon content. Additionally, the thermally evolved coal samples display higher A(CH2)/A(CH3) values when compared to the normal coal samples, signifying a reduction in the degree of branching attributed to magmatic thermal evolution.
- (5)
- It is necessary to recognize the limitations of this study; the microstructures of the two groups of coal samples were analyzed and investigated through the test results, but only approximate relationships could be obtained due to the limited number of coal samples selected. The next step will be to increase the number of test coal samples for studying.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, J.; Zhao, K.; Cheng, Y.; Zheng, S.; Zhang, S.; Wang, R. Numerical Simulation of Magma Intrusion on the Thermal Evolution of Low-Rank Coal. Environ. Earth Sci. 2021, 80, 12. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Cheng, Y.-P.; Yin, G.-Z.; Guo, P.-K.; Mou, J.-H. The effects of magma intrusion on localized stress distribution and its implications for coal mine outburst hazards. Eng. Geol. 2017, 218, 12–21. [Google Scholar] [CrossRef]
- Pan, R.; Hu, D.; Chao, J.; Han, X.; Jia, H.; Li, C. Oxidation and exothermic properties of long flame coal spontaneous combustion under solid-liquid-gas coexistence and its microscopic mechanism analysis. Sci. Total. Environ. 2023, 895, 165206. [Google Scholar] [CrossRef] [PubMed]
- Saghafi, A.; Pinetown, K.; Grobler, P.; van Heerden, J. CO2 storage potential of South African coals and gas entrapment enhancement due to igneous intrusions. Int. J. Coal Geol. 2008, 73, 74–87. [Google Scholar] [CrossRef]
- Jiang, J.-Y.; Cheng, Y.-P.; Wang, L.; Li, W.; Wang, L. Petrographic and geochemical effects of sill intrusions on coal and their implications for gas outbursts in the Wolonghu Mine, Huaibei Coalfield, China. Int. J. Coal Geol. 2011, 88, 55–66. [Google Scholar] [CrossRef]
- Beamish, B.; Crosdale, P.J. Instantaneous outbursts in underground coal mines: An overview and association with coal type. Int. J. Coal Geol. 1998, 35, 27–55. [Google Scholar] [CrossRef]
- Golab, A.N.; Carr, P.F. Changes in Geochemistry and Mineralogy of Thermally Altered Coal, Upper Hunter Valley, Australia. Int. J. Coal Geol. 2004, 57, 197–210. [Google Scholar] [CrossRef]
- Sachsenhofer, R.F.; Privalov, V.A.; Panova, E.A. Basin Evolution and Coal Geology of the Donets Basin (Ukraine, Russia): An Overview. Int. J. Coal Geol. 2012, 89, 26–40. [Google Scholar] [CrossRef]
- Chen, S.; Wu, D.; Liu, G.; Sun, R. Raman spectral characteristics of magmatic-contact metamorphic coals from Huainan Coalfield, China. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 171, 31–39. [Google Scholar] [CrossRef]
- Qin, Y.; Jin, K.; Tian, F.; Su, W.; Ren, S. Effects of Ultrathin Igneous Sill Intrusion on the Petrology, Pore Structure and Ad/Desorption Properties of High Volatile Bituminous Coal: Implications for the Coal and Gas Outburst Prevention. Fuel 2022, 316, 11. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, J.; Cheng, Y.; Huang, H.; Zhang, L. Evolution of Composition and Methane Occurrence of Bituminous Coal after Igneous Intrusion: A Case Study of Daxing Coal Mine, Tiefa Basin, China. ACS Omega 2022, 7, 45708–45718. [Google Scholar] [CrossRef] [PubMed]
- Ndaji, F.E.; Butterfield, I.M.; Thomas, K. Changes in the macromolecular structure of coals with pyrolysis temperature. Fuel 1997, 76, 169–177. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, W.; Cheng, Y.; Liu, Z.; Zhang, Q.; Zhao, K. Molecular Structure Characterization of Middle-High Rank Coal Via Xrd, Raman and Ftir Spectroscopy: Implications for Coalification. Fuel 2019, 239, 559–572. [Google Scholar] [CrossRef]
- Gan, Q.; Xu, J.; Peng, S.; Yan, F.; Wang, R.; Cai, G. Effect of heating on the molecular carbon structure and the evolution of mechanical properties of briquette coal. Energy 2021, 237, 121548. [Google Scholar] [CrossRef]
- He, X.; Liu, X.; Nie, B.; Song, D. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 2017, 206, 555–563. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, Y.; Cheng, Y.; Wang, C.; Zhang, S. Study on the evolution of pore structure and desorption characteristics of crushed tectonic coals under the different conditions of unloading confining pressure. Powder Technol. 2023, 426, 118681. [Google Scholar] [CrossRef]
- Rosen, H.; Novakov, T. Raman scattering and the characterisation of atmospheric aerosol particles. Nature 1977, 266, 708–710. [Google Scholar] [CrossRef]
- Sonibare, O.O.; Haeger, T.; Foley, S.F. Structural Characterization of Nigerian Coals by X-ray Diffraction, Raman and Ftir Spectroscopy. Energy 2010, 35, 5347–5353. [Google Scholar] [CrossRef]
- Mennella, V.; Monaco, G.; Colangeli, L.; Bussoletti, E. Raman spectra of carbon-based materials excited at 1064 nm. Carbon 1995, 33, 115–121. [Google Scholar] [CrossRef]
- Dun, W.; Guijian, L.; Ruoyu, S.; Shancheng, C. Influences of magmatic intrusion on the macromolecular and pore structures of coal: Evidences from Raman spectroscopy and atomic force microscopy. Fuel 2014, 119, 191–201. [Google Scholar] [CrossRef]
- Xie, Y.; You, J.; Lu, L.; Wang, M.; Wang, J. Raman Spectroscopic Study of Coal Samples during Heating. Appl. Sci. 2019, 9, 4699. [Google Scholar] [CrossRef]
- Zhang, K.; Zou, A.; Wang, L.; Cheng, Y.; Liu, C.; Li, W. Morphological Characterization of the Microcrystalline Structure of Tectonic Coal and Its Intrinsic Connection with Ultra-micropore Evolution. Energy Fuels 2022, 36, 1482–1494. [Google Scholar] [CrossRef]
- Pan, J.; Lv, M.; Hou, Q.; Han, Y.; Wang, K. Coal microcrystalline structural changes related to methane adsorption/desorption. Fuel 2019, 239, 13–23. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Zhang, H.; Ma, R.; Li, K.; Wu, Y.; Teppen, B.J. Structural order evaluation and structural evolution of coal derived natural graphite during graphitization. Carbon 2020, 157, 714–723. [Google Scholar] [CrossRef]
- Başaran, Y.; Denizli, A.; Sakintuna, B.; Taralp, A.; Yürüm, Y. Bio-Liquefaction/Solubilization of Low-Rank Turkish Lignites and Characterization of the Products. Energy Fuels 2003, 17, 1068–1074. [Google Scholar] [CrossRef]
- Gezici, O.; Demir, I.; Demircan, A.; Ünlü, N.; Karaarslan, M. Subtractive-FTIR spectroscopy to characterize organic matter in lignite samples from different depths. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 96, 63–69. [Google Scholar] [CrossRef]
- Jiang, J.; Cheng, Y.; Zhang, S. Quantitative Characterization of Pore Structure and Gas Adsorption and Diffusion Properties of Low-Rank Coal. J. China Coal Soc. 2021, 46, 3221–3233. [Google Scholar]
- Dun, W.; Guijian, L.; Ruoyu, S.; Xiang, F. Investigation of Structural Characteristics of Thermally Metamorphosed Coal by FTIR Spectroscopy and X-ray Diffraction. Energy Fuels 2013, 27, 5823–5830. [Google Scholar] [CrossRef]
- Shi, Q.; Qin, B.; Bi, Q.; Qu, B. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine, China. Fuel 2018, 226, 307–315. [Google Scholar] [CrossRef]
- Gao, Y.; Qin, B.; Shi, Q.; Liang, H.; Chen, K. Effect of Igneous Intrusions on Low-temperature Oxidation Characteristics of Coal in Daxing Mine, China. Combust. Sci. Technol. 2019, 193, 577–593. [Google Scholar] [CrossRef]
- ISO 17247:2020; Coal and Coke–Ultimate Analysis. ISO: Geneva, Switzerland, 2020.
- ISO 19579:2006; Solid Mineral Fuels–Determination of Sulfur by IR Spectrometry. ISO: Geneva, Switzerland, 2006.
- ISO 11722:2013; Solid Mineral Fuels–Hard Coal–Determination of Moisture in the General Analysis Test Sample by Drying Nitrogen. ISO: Geneva, Switzerland, 2013.
- ISO 1171:2010; Solid Mineral Fuels–Determination Ash. ISO: Geneva, Switzerland, 2010.
- Mielczarski, J.A.; Deńca, A.; Strojek, J.W. Application of Attenuated Total Reflection Infrared Spectroscopy to the Characterization of Coal. Appl. Spectrosc. 1986, 40, 998–1004. [Google Scholar] [CrossRef]
- Kastner, J.; Pichler, T.; Kuzmany, H.; Curran, S.; Blau, W.; Weldon, D.N.; Delamesiere, M.; Draper, S.; Zandbergen, H. Res-onance Raman and Infrared Spectroscopy of Carbon Nanotubes. Chem. Phys. Lett. 1994, 221, 53–58. [Google Scholar] [CrossRef]
- Hu, H.; Li, M.; Li, L.; Tao, X. Improving bubble-particle attachment during the flotation of low rank coal by surface modification. Int. J. Min. Sci. Technol. 2020, 30, 217–223. [Google Scholar] [CrossRef]
- Zhang, K.; Cheng, Y.; Li, W.; Hao, C.; Hu, B.; Jiang, J. Microcrystalline Characterization and Morphological Structure of Tectonic Anthracite Using Xrd, Liquid Nitrogen Adsorption, Mercury Porosimetry, and Micro-Ct. Energy Fuels 2019, 33, 10844–10851. [Google Scholar] [CrossRef]
- Lu, L.; Sahajwalla, V.; Kong, C.; Harris, D. Quantitative X-ray diffraction analysis and its application to various coals. Carbon 2001, 39, 1821–1833. [Google Scholar] [CrossRef]
- Okolo, G.N.; Neomagus, H.W.J.P.; Everson, R.C.; Roberts, M.J.; Bunt, J.R.; Sakurovs, R.; Mathews, J.P. Chemical–Structural Properties of South African Bituminous Coals: Insights from Wide Angle Xrd–Carbon Fraction Analysis, Atr–Ftir, Solid State 13 C Nmr, and Hrtem Techniques. Fuel 2015, 158, 779–792. [Google Scholar] [CrossRef]
- Matthews, M.J.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Endo, M. Origin of Dispersive Effects of the Ra-mandband in Carbon Materials. Phys. Rev. B 1999, 59, R6585. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Ge, B.; Liu, Z. Role of chemical structures in coalbed methane adsorption for anthracites and bituminous coals. Adsorption 2017, 23, 711–721. [Google Scholar] [CrossRef]
- Orrego-Ruiz, J.A.; Cabanzo, R.; Mejía-Ospino, E. Study of Colombian coals using photoacoustic Fourier transform infrared spectroscopy. Int. J. Coal Geol. 2011, 85, 307–310. [Google Scholar] [CrossRef]
- Takagi, H.; Maruyama, K.; Yoshizawa, N.; Yamada, Y.; Sato, Y. XRD analysis of carbon stacking structure in coal during heat treatment. Fuel 2004, 83, 2427–2433. [Google Scholar] [CrossRef]
- Hirsch, P.B. X-ray Scattering from Coals. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1954, 226, 143–169. [Google Scholar]
- Lu, L.; Sahajwalla, V.; Harris, D. Characteristics of Chars Prepared from Various Pulverized Coals at Different Temperatures Using Drop-Tube Furnace. Energy Fuels 2000, 14, 869–876. [Google Scholar] [CrossRef]
- Zeng, H.; Xing, B.; Cao, Y.; Xu, B.; Hou, L.; Guo, H.; Cheng, S.; Huang, G.; Zhang, C.; Sun, Q. Insight into the Microstructural Evolution of Anthracite During Carbonization-Graphitization Process from the Per-spective of Materialization. Int. J. Min. Sci. Technol. 2022, 32, 1397–1406. [Google Scholar] [CrossRef]
- Wu, S.; Gu, J.; Zhang, X.; Wu, Y.; Gao, J. Variation of Carbon Crystalline Structures and CO2 Gasification Reactivity of Shenfu Coal Chars at Elevated Temperatures. Energy Fuels 2007, 22, 199–206. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman Microspectroscopy of Soot and Related Car-bonaceous Materials: Spectral Analysis and Structural Information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J.M.D. Raman Microprobe Studies on Carbon Materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Wang, W.; Thomas, K.; Poultney, R.; Willmers, R. Iron catalysed graphitisation in the blast furnace. Carbon. 1995, 33, 1525–1535. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Fang, H.L. Maturity Trends in Raman Spectra from Kerogen and Coal. Energy Fuels 2001, 15, 653–658. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, S.; Longhurst, P.; Yang, W.; Zheng, S. Molecular Structure Characterization of Bituminous Coal in Northern China Via Xrd, Raman and Ftir Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 255, 119724. [Google Scholar] [CrossRef]
- Meng, X.; Gao, M.; Chu, R.; Miao, Z.; Wu, G.; Bai, L.; Liu, P.; Yan, Y.; Zhang, P. Construction of a macromolecular structural model of Chinese lignite and analysis of its low-temperature oxidation behavior. Chin. J. Chem. Eng. 2017, 25, 1314–1321. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, Y.; Li, Q.; Deng, J.; Wang, K. Free radicals, apparent activation energy, and functional groups during low-temperature oxidation of Jurassic coal in Northern Shaanxi. Int. J. Min. Sci. Technol. 2018, 28, 469–475. [Google Scholar] [CrossRef]
- Li, K.; Khanna, R.; Zhang, J.; Barati, M.; Liu, Z.; Xu, T.; Yang, T.; Sahajwalla, V. Comprehensive Investigation of Various Structural Features of Bituminous Coals Using Advanced Analytical Techniques. Energy Fuels 2015, 29, 7178–7189. [Google Scholar] [CrossRef]
Sample | Proximate Analysis (wt.%) | Ultimate Analysis (wt.%) | H/C | fa | (R/C)u | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | Fc | C | H | O | N | S | ||||
DX 1# | 1.14 | 23.91 | 30.85 | 44.10 | 81.65 | 4.31 | 12.32 | 1.29 | 0.43 | 0.63 | 0.82 | 0.27 |
DX 2# | 3.09 | 9.06 | 36.26 | 51.39 | 80.12 | 5.39 | 13.01 | 1.11 | 0.37 | 0.81 | 0.77 | 0.21 |
HY 1# | 1.38 | 38.12 | 18.90 | 41.60 | 81.22 | 5.07 | 12.31 | 1.11 | 0.29 | 0.75 | 0.97 | 0.14 |
HY 2# | 5.98 | 14.94 | 23.16 | 55.92 | 80.31 | 5.63 | 12.84 | 1.01 | 0.21 | 0.84 | 0.93 | 0.12 |
Sample | 2θ002 (°) | d002 (Å) | Lc (Å) | Nave | fa |
---|---|---|---|---|---|
DX 1# | 26.11 | 3.41 | 22.76 | 6.68 | 0.69 |
DX 2# | 25.81 | 3.45 | 21.97 | 6.37 | 0.57 |
HY 1# | 25.38 | 3.51 | 27.02 | 7.70 | 0.81 |
HY 2# | 25.01 | 3.56 | 26.19 | 7.36 | 0.79 |
Sample | Peak | Position (cm−1) | Integral Intensity | FWHM | ID1/IG | G-D1 | FD1/FG | La (Å) |
---|---|---|---|---|---|---|---|---|
DX 1# | G | 1576 | 87,938 | 74 | 1.84 | 236 | 2.16 | 26.93 |
D1 | 1340 | 161,997 | 160 | |||||
DX 2# | G | 1576 | 208,233 | 76 | 2.16 | 230 | 2.36 | 22.94 |
D1 | 1346 | 449,889 | 179 | |||||
HY 1# | G | 1588 | 162,252 | 70 | 1.55 | 249 | 2.19 | 31.97 |
D1 | 1339 | 251,734 | 153 | |||||
HY 2# | G | 1589 | 135,348 | 74 | 1.87 | 246 | 2.22 | 26.50 |
D1 | 1343 | 252,906 | 164 |
Number | Peak Position | Wavenumber Range | Functional Group Assignment |
---|---|---|---|
1 | 3680 | 3685~3600 | Free -OH |
2 | 3550 | 3600~3500 | -OH self-contained hydrogen bond |
3 | 3400 | 3550~3200 | -OH stretching vibration |
4 | 2950 | 2975~2950 | CH3 asymmetric stretching vibration |
5 | 2920 | 2935~2915 | CH2 asymmetric stretching vibration |
6 | 2870 | 2875~2860 | CH3 symmetric stretching vibration |
7 | 2850 | 2860~2840 | CH2 symmetric stretching vibration |
8 | 1750 | 1770~1720 | Aliphatic C=O stretching vibration |
9 | 1700 | 1715~1690 | Aromatic C=O stretching vibration |
10 | 1675 | 1690~1660 | C=O stretching vibration in quinone |
11 | 1600 | 1605~1595 | Aromatic C=C stretching vibration |
12 | 1470 | 1480~1465 | CH2 asymmetric deformation vibration |
13 | 1440 | 1460~1435 | CH3 asymmetric deformation vibration |
14 | 1380 | 1385~1370 | CH3 symmetric bending vibration |
15 | 1150 | 1160~1120 | C-O-C stretching vibration |
16 | 1110 | 1120~1080 | S=O stretching vibration |
17 | 1050 | 1060~1020 | Si-O-Si or Si-O-C stretching vibration |
18 | 870 | 900~850 | aromatic nucleus (CH), one adjacent H deformation |
19 | 820 | 825~800 | aromatic nucleus (CH), three adjacent H deformation |
20 | 750 | 770~730 | aromatic nucleus (CH), five adjacent H deformation |
21 | 720 | 724~716 | n-Alkane side-chain skeleton (CH2)n oscillatory vibration |
Sample | Hal/H | H/C | Cal/C | fa | (R/C)u | A(CH2)/A(CH3) |
---|---|---|---|---|---|---|
DX 1# | 0.74 | 0.63 | 0.26 | 0.74 | 0.31 | 3.64 |
DX 2# | 0.85 | 0.81 | 0.38 | 0.62 | 0.29 | 2.99 |
HY 1# | 0.76 | 0.75 | 0.32 | 0.68 | 0.28 | 3.87 |
HY 2# | 0.69 | 0.84 | 0.32 | 0.67 | 0.24 | 3.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Jiang, J.; Huang, Y.; Zhang, F.; He, W. An Experimental Study on the Effect of Magmatic Thermal Evolution on the Molecular Structure of Low-Rank Coal. Appl. Sci. 2023, 13, 11907. https://doi.org/10.3390/app132111907
Zhao W, Jiang J, Huang Y, Zhang F, He W. An Experimental Study on the Effect of Magmatic Thermal Evolution on the Molecular Structure of Low-Rank Coal. Applied Sciences. 2023; 13(21):11907. https://doi.org/10.3390/app132111907
Chicago/Turabian StyleZhao, Wei, Jingyu Jiang, Yongzhen Huang, Fang Zhang, and Wanxing He. 2023. "An Experimental Study on the Effect of Magmatic Thermal Evolution on the Molecular Structure of Low-Rank Coal" Applied Sciences 13, no. 21: 11907. https://doi.org/10.3390/app132111907
APA StyleZhao, W., Jiang, J., Huang, Y., Zhang, F., & He, W. (2023). An Experimental Study on the Effect of Magmatic Thermal Evolution on the Molecular Structure of Low-Rank Coal. Applied Sciences, 13(21), 11907. https://doi.org/10.3390/app132111907