Effects of Varying Planting Patterns on Wheat Aphids’ Occurrence and the Control Effect of Pesticide Reduction Spraying Process by Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Aphids Occurrence Survey
2.2. UAV Spraying Pesticides to Control Wheat Aphids Experiment
2.3. UAV Spraying and Artificial Spraying Comparison Experiment
2.4. Statistical Analysis
3. Results
3.1. Wheat Aphids Occurrence
3.2. UAV Spraying Pesticides to Control Wheat Aphids
3.3. UAV Spraying and Artificial Spraying Pesticides to Control Wheat Aphids
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arenas-Corraliza, M.G.; Rolo, V.; López-Díaz, M.L.; Moreno, G. Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Sci. Rep. 2019, 9, 9547. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.D.; Cao, H.X.; Liu, S.Q.; Gu, X.B.; Gao, Y.X. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.J.; Gan, Y.W.; Duan, Z.P.; Hao, X.D.; Xu, W.L.; Li, L.H. Different tree age affects light competition and yield in wheat grown as a companion crop in jujube-wheat agroforestry. Agrofor. Syst. 2017, 93, 653–664. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Liu, J.; Han, S.; Wang, Q.; Evers, J.; Liu, J.; Van der Werf, W.; Li, L. Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations. Field Crops Res. 2014, 169, 132–139. [Google Scholar] [CrossRef]
- Duan, Z.P.; Gan, Y.W.; Wang, B.J.; Hao, X.D.; Xu, W.L.; Zhang, W.; Li, L.H. Interspecific interaction alters root morphology in young walnut/wheat agroforestry systems in northwest China. Agrofor. Syst. 2019, 93, 419–434. [Google Scholar] [CrossRef]
- Rivest, D.; Lorente, M.; Olivier, A.; Messier, C. Soil biochemical properties and microbial resilience in agroforestry systems: Effects on wheat growth under controlled drought and flooding conditions. Sci. Total Environ. 2013, 463, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Swieter, A.; Langhof, M.; Lamerre, J.; Greef, J.M. Long-term yields of oilseed rape and winter wheat in a short rotation alley cropping agroforestry system. Agrofor. Syst. 2019, 93, 1853–1864. [Google Scholar] [CrossRef]
- Quinkenstein, A.; Woellecke, J.; Böhm, C.; Grünewald, H.; Freese, D.; Schneider, B.U.; Hüttl, R.F. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
- Pardon, P.; Reubens, B.; Reheul, D.; Mertens, J.; De Frenne, P.; Coussement, T.; Janssens, P.; Verheyen, K. Trees Increase Soil Organic Carbon and Nutrient Availability in Temperate Agroforestry Systems. Agric. Ecosyst. Environ. 2017, 247, 98–111. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Rankoth, L.; Jose, S. Agroforestry and Biodiversity. Sustainability 2019, 11, 2879. [Google Scholar] [CrossRef]
- Baker, T.P.; Moroni, M.T.; Mendham, D.S.; Smith, R.; Hunt, M.A. Impacts of windbreak shelter on crop and livestock production. Crop Pasture Sci. 2018, 69, 785–796. [Google Scholar] [CrossRef]
- Dupraz, C.; Blitz-Frayret, C.; Lecomte, I.; Molto, Q.; Reyes, F.; Gosme, M. Influence of latitude on the light availability for intercrops in an agroforestry alley-cropping system. Agrofor. Syst. 2018, 92, 1019–1033. [Google Scholar] [CrossRef]
- Reyes, F.; Gosme, M.; Wolz, K.J.; Lecomte, I.; Dupraz, C. Alley cropping mitigates the impacts of climate change on a wheat crop in a Mediterranean environment: A biophysical model-based assessment. Agriculture 2021, 11, 356. [Google Scholar] [CrossRef]
- Böhm, C.; Kanzler, M.; Freese, D. Wind speed reductions as influenced by woody hedgerows grown for biomass in short rotation alley cropping systems in Germany. Agrofor. Syst. 2014, 88, 579–591. [Google Scholar] [CrossRef]
- Nuberg, I.K.; Mylius, S.J. Effect of shelter on the yield and water use of wheat. Aust. J. Exp. Agric. 2002, 42, 773–780. [Google Scholar] [CrossRef]
- Li, F.D.; Meng, P.; Fu, D.L.; Wang, B.P. Light distribution, photosynthetic rate and yield in a paulownia-wheat intercropping system in China. Agrofor. Syst. 2008, 74, 163–172. [Google Scholar] [CrossRef]
- Friday, J.B.; Fownes, J.H. Competition for light between hedgerows and maize in an alley cropping system in Hawaii, USA. Agrofor. Syst. 2002, 55, 125–137. [Google Scholar] [CrossRef]
- Li, H.Q.; Pan, H.S.; Wang, D.M.; Liu, B.; Liu, J.; Zhang, J.P.; Lu, Y.H. Intercropping with fruit trees increases population abundance and alters species composition of spider mites on cotton. Environ. Entomol. 2018, 47, 781–787. [Google Scholar] [CrossRef]
- Hu, X.S.; Liu, X.F.; Thieme, T.; Zhang, G.S.; Liu, T.X.; Zhao, H.Y. Testing the fecundity advantage hypothesis with Sitobion avenae, Rhopalosiphum padi and Schizaphis graminum (Hemiptera: Aphididae) feeding on ten wheat accessions. Sci. Rep. 2015, 5, 18549. [Google Scholar] [CrossRef]
- Hu, X.S.; Keller, M.A.; Liu, X.F.; Hu, Z.Q.; Zhao, H.Y.; Liu, X.T. The resistance and correlation analysis to three species of cereal aphids (Hemiptera: Aphididae) on 10 wheat varieties or lines. J. Econ. Entomol. 2013, 106, 1894–1901. [Google Scholar] [CrossRef]
- Liu, F.H.; Kang, Z.W.; Tan, X.L.; Fan, Y.L.; Tian, H.G.; Liu, T.X. Physiology and defense responses of wheat to the infestation of different cereal aphids. J. Integr. Agric. 2020, 18, 2–12. [Google Scholar] [CrossRef]
- Xu, Z.H.; Chen, J.L.; Cheng, D.F.; Sun, J.R.; Liu, Y.; Francis, F. Discovery of English Grain Aphid (Hemiptera: Aphididae) Biotypes in China. J. Econ. Entomol. 2011, 104, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Macfadyen, S.; Gibson, R.; Raso, L.; Sint, D.; Traugott, M.; Memmott, J. Parasitoid control of aphids in organic and conventional farming systems. Agric. Ecosyst. Environ. 2009, 133, 14–18. [Google Scholar] [CrossRef]
- Gold, C.S.; Altleri, M.A.; Bellotti, A.C. Effects of intercropping and varietal mixtures on the cassava hornworm, Erinnyis ello L. (Lepidoptera: Sphingidae), and the stemborer, Chilomima clarkei (Amsel) (Lepidoptera: Pyralidae), in Colombia. Pans. Pest. Art. News Summ. 1990, 36, 362–367. [Google Scholar]
- Lys, J.A.; Nentwig, W. Augmentation of beneficial arthropods by strip-management. Oecologia 1992, 92, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Song, B.Z.; Zhang, J.; Hu, J.H.; Wu, H.Y.; Kong, Y.; Yao, Y.C. Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants. Pest Manag. Sci. 2011, 67, 1107–1114. [Google Scholar]
- Li, X.W.; Lu, X.X.; Zhang, Z.J.; Huang, J.; Zhang, J.M.; Wang, L.K.; Hafeez, M.; Fernández-Grandon, G.M.; Lu, Y.B. Intercropping rosemary (Rosmarinus officinalis) with sweet pepper (Capsicum annum) reduces major pest population densities without impacting natural enemy populations. Insects 2021, 12, 74. [Google Scholar] [CrossRef]
- Shi, X.Y.; Li, H.B.; Wang, H.G.; Wang, F.T.; Cao, S.Q. Progresses of pesticide reduction techniques in wheat production and the synergistic effects on the prevention and control of wheat pests. J. China. Agric. Univ. 2022, 27, 53–62. [Google Scholar]
- Wei, N.; Lin, L.L.; He, X.F.; Zhong, Y.Z.; Zhang, G.L.; Xie, M.H.; Su, W.H.; Chen, H.L. Laboratory bioassay and field efficiency test of eight pesticides on wheat aphids. Agrochemicals 2020, 59, 918–920+924. [Google Scholar]
- Chen, B.C.; Zhang, Y.N.; Liu, T.J.; Yin, X.; Zhu, Q.S.; Jiang, H.Y.; Ma, H. Relationships between the control effect on aphid populations and the residue decline dynamics of thiamethoxam in wheat fields. Plant. Protect. 2019, 45, 98–103. [Google Scholar]
- Dong, W.Y.; Zhang, H.H.; Chen, A.Q.; Yan, J.H.; Wei, Y.H.; Ma, K.S.; Pu, L.M.; Cao, S.Q.; Shi, X.Y. Resistance levels to five insecticides of wheat aphid field populations from some regions of Gansu and Qinghai province of China. Agrochemicals 2020, 59, 532–536. [Google Scholar]
- Xue, X.Y.; Tu, K.; Qin, W.C.; Lan, Y.B.; Zhang, H.H. Drift and deposition of ultra-low altitude and low volume application in paddy field. Int. J. Agric. Biol. Eng. 2014, 7, 23–28. [Google Scholar]
- Chen, S.D.; Lan, Y.B.; Li, J.Y.; Zhou, Z.Y.; Liu, A.M.; Xu, X.J. Comparison of the pesticide effects of aerial and artificial spray applications for rice. J. South China Agric. Univ. 2017, 38, 103–109. [Google Scholar]
- Zhou, H.B.; Chen, L.; Chen, J.L.; Francis, F.; Haubruge, E.; Liu, Y.; Bragard, C.; Cheng, D.F. Adaptation of wheat-pea intercropping pattern in China to reduce Sitobion avenae (Hemiptera: Aphididae) occurrence by promoting natural enemies. Agroecol. Sustain. Food 2013, 37, 1001–1016. [Google Scholar] [CrossRef]
- Altieri, M.A.; Letourneau, D.K. Vegetation management and biological control in agroecosystems. Crop Prot. 1982, 1, 405–430. [Google Scholar] [CrossRef]
- Xie, H.C.; Chen, J.L.; Cheng, D.F.; Zhou, H.B.; Sun, J.R.; Liu, Y.; Francis, F. Impact of wheat-mung bean intercropping on English grain aphid (Hemiptera: Aphididae) populations and its natural enemy. J. Econ. Entomol. 2012, 105, 854–859. [Google Scholar] [CrossRef]
- Liu, J.H.; Yan, Y.; Ali, A.; Wang, N.T.; Yu, M.F. Effects of wheat-maize intercropping on population dynamics of wheat aphids and their natural enemies. Sustainability 2017, 9, 1390. [Google Scholar] [CrossRef]
- Wang, G.; Cui, L.L.; Dong, J.; Francis, F.; Liu, Y.; Tooker, J. Combining intercropping with semiochemical releases: Optimization of alternative control of Sitobion avenae in wheat crops in China. Entomol. Exp. Appl. 2011, 140, 189–195. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, Q.; Yu, D.Y.; Wang, L.M.; Liu, Z.Z.; Li, X.; Liu, X.Y. Systemically modeling the relationship between climate change and wheat aphid abundance. Sci. Total Environ. 2019, 674, 392–400. [Google Scholar] [CrossRef]
- Zhang, W.; Ahanbieke, P.; Wang, B.J.; Gan, Y.W.; Li, L.H.; Christie, P.; Li, L. Temporal and spatial distribution of roots as affected by interspecific interactions in a young walnut/wheat alley cropping system in northwest China. Agrofor. Syst. 2015, 89, 327–343. [Google Scholar] [CrossRef]
- Wang, B.J.; Zhang, W.; Ahanbieke, P.; Gan, Y.W.; Xu, W.L.; Li, L.H.; Christie, P.; Li, L. Interspecific interactions alter root length density, root diameter and specific root length in jujube/wheat agroforestry systems. Agrofor. Syst. 2014, 88, 835–850. [Google Scholar] [CrossRef]
- Zhang, W.; Ahanbieke, P.; Wang, B.J.; Xu, W.L.; Li, L.H.; Christie, P.; Li, L. Root distribution and interactions in jujube tree/wheat agroforestry system. Agrofor. Syst. 2013, 87, 929–939. [Google Scholar] [CrossRef]
- Cao, F.L.; Kimmins, J.P.; Wang, J.R. Competitive interactions in Ginkgo and crop species mixed agroforestry systems in Jiangsu, China. Agrofor. Syst. 2012, 84, 401–415. [Google Scholar] [CrossRef]
- Livesley, S.J.; Gregory, P.J.; Buresh, R.J. Root distribution and properties of a young alley-cropping system: Effects on soil carbon storage and microbial activity. Plant Soil 2022, 482, 601–625. [Google Scholar]
- Swieter, A.; Maren, L.; Justine, L. Competition, stress and benefits: Trees and crops in the transition zone of a temperate short rotation alley cropping agroforestry system. J. Agron. Crop Sci. 2022, 208, 209–224. [Google Scholar] [CrossRef]
- Awmack, C.S.; Leather, S.R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 2002, 47, 817–844. [Google Scholar] [CrossRef]
- Ali, M.Y.; Naseem, T.; Arshad, M.; Ashraf, I.; Rizwan, M.; Tahir, M.; Rizwan, M.; Sayed, S.; Ullah, M.I.; Khan, R.R.; et al. Host-Plant Variations Affect the Biotic Potential, Survival, and Population Projection of Myzus persicae (Hemiptera: Aphididae). Insects 2021, 12, 375. [Google Scholar] [CrossRef] [PubMed]
- Rostami, M.; Zamani, A.A.; Goldastech, S.; Shoushtari, R.V.; Kheradmand, K. Influence of nitrogen fertilization on biology of Aphis gossypii. J. Plant Prot. Res. 2016, 52, 118–121. [Google Scholar]
- Ríos Martínez, A.F.; Costamagna, A.C. Effects of crowding and host plant quality on morph determination in the soybean aphid, Aphis glycines. Entomol. Exp. Appl. 2018, 166, 53–62. [Google Scholar] [CrossRef]
- Zarasvand, A.A.; Allahyari, H.; Fattah-Hosseini, S. Effect of nitrogen fertilisation on biology, life table parameters and population abundance of greenbug; Schizaphis graminum (Rondani) (Hemiptera: Aphididae). Arch. Phytopathol. Plant Prot. 2013, 46, 882–889. [Google Scholar] [CrossRef]
- Vijendravarma, R.K.; Narasimha, S.; Kawecki, T.J. Adaptation to abundant low quality food improves the ability to compete for limited rich food in Drosophila melanogaster. PLoS ONE 2012, 7, e30650. [Google Scholar] [CrossRef] [PubMed]
- Leather, S.R.; Wade, F.A.; Godfray, H.C.J. Plant quality, progeny sequence, and the sex ratio of the sycamore aphid, Drepanosiphum platanoidis. Entomol. Exp. Appl. 2005, 115, 311–321. [Google Scholar] [CrossRef]
- Honěk, A. Effect of plant quality and microclimate on population growth and maximum abundances of cereal aphids, Metopolophium dirhodum (Walker) and Sitobion avenae (F.) (Hom., Aphididae). J. Appl. Entomol. 1987, 104, 304–313. [Google Scholar] [CrossRef]
- Rodríguez-Del-Bosque, L.A.; Silva-Serna, M.M.; Aranda-Lara, U. Effect of Natural and Simulated Rainfall and Wind on Melanaphis sacchari on Sorghum. Southwest. Entomol. 2020, 45, 357–364. [Google Scholar] [CrossRef]
- Soares, J.R.S.; Silva Paes, J.; Araújo, V.C.R. Spatiotemporal dynamics and natural mortality factors of Myzus persicae (Sulzer) (Hemiptera: Aphididae) in bell pepper crops. Neotrop. Entomol. 2020, 49, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Yan, H.W.; Wang, X.P.; He, Y. Spatio-temporal analysis of gale concentration in Xinjiang. Arid Land Geogr. 2020, 43, 623–632. [Google Scholar]
- Heckel, D.G. Insecticide resistance after Silent spring. Science 2012, 337, 1612–1614. [Google Scholar] [CrossRef] [PubMed]
- Kankam, F. Causes and management of pesticides contamination in agriculture: A review. Ghana J. Sci. Technol. Dev. 2021, 7, 103–118. [Google Scholar] [CrossRef]
- Qin, W.C.; Xue, X.Y.; Zhang, S.M.; Gu, W.; Wang, B.K. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew. Int. J. Agric. Biol. Eng. 2018, 11, 27–32. [Google Scholar] [CrossRef]
- Lou, Z.X.; Xin, F.; Han, X.Q.; Lan, Y.B.; Duan, T.Z.; Fu, W. Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites. Agronomy 2018, 8, 187. [Google Scholar] [CrossRef]
- Wang, G.B.; Lan, Y.B.; Yuan, H.Z. Comparison of spray deposition, control efficacy on wheat aphids and working efficiency in the wheat field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack sprayers. Appl. Sci. 2019, 9, 218. [Google Scholar] [CrossRef]
- Wang, G.B.; Lan, Y.B.; Qi, H.X.; Chen, P.C.; Hewitt, A.J.; Han, Y.X. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef]
- Li, X.; Giles, D.K.; Niederholzer, F.J.; Andaloro, J.T.; Lang, E.B.; Watson, L.J. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Manag. Sci. 2020, 77, 527–537. [Google Scholar] [CrossRef]
- Meng, Y.H.; Lan, Y.B.; Mei, G.Y.; Guo, Y.W.; Song, J.L.; Wang, Z.G. Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control. Int. J. Agric. Biol. Eng. 2018, 11, 46–53. [Google Scholar] [CrossRef]
Treatments | Pesticides | Dosage (g/hm2) | Percentage Reduction of Recommanded Concentration (%) |
---|---|---|---|
1 | Thiamethoxam 70 WG | 21.00 | 0.00 |
2 | Thiamethoxam 70 WG | 14.70 | −30.00 |
3 | Sulfoxaflor 22 SC | 33.00 | 0.00 |
4 | Sulfoxaflor 22 SC | 23.10 | −30.00 |
5 | Imidacloprid 70 WG | 31.50 | 0.00 |
6 | Imidacloprid 70 WG | 22.05 | −30.00 |
7 | Pymetrozine 50 WG | 112.50 | 0.00 |
8 | Pymetrozine 50 WG | 78.75 | −30.00 |
9 | Acetamiprid 20 WP | 9.00 | 0.00 |
10 | Acetamiprid 20 WP | 6.30 | −30.00 |
11 | Thiamethoxam-Cyhalothrin 22 SC | 33.00 | 0.00 |
12 | Thiamethoxam-Cyhalothrin 20 SC | 23.10 | −30.00 |
CK | Water | - | - |
Treatments | Pesticides | Dosage (g/hm2) | Pesticide Spraying Method |
---|---|---|---|
P3 | Sulfoxaflor 22 SC | 33.00 | UAV |
P4 | Sulfoxaflor 22 SC | 23.10 | UAV |
P9 | Acetamiprid 20 WP | 9.00 | UAV |
P10 | Acetamiprid 20 WP | 6.30 | UAV |
P3M | Sulfoxaflor 22 SC | 33.00 | MBES |
P4M | Sulfoxaflor 22 SC | 23.10 | MBES |
P9M | Acetamiprid 20 WP | 9.00 | MBES |
P10M | Acetamiprid 20 WP | 6.30 | MBES |
CK | Water | - | - |
Parameters | Values |
---|---|
Operating Pressure | 2–3 kg |
Liquid Injection Volume | 1.5–1.9 L/min |
Impeller Speed | 3200 r/min |
Effective Range | ≤4.5 m |
Treatments | Fields | 1 DAS Control Effects (%) | 3 DAS Control Effects (%) | 7 DAS Control Effects (%) |
---|---|---|---|---|
P3 | XD20 | 67.47% ± 3.63% a | 77.54% ± 2.86% a | 84.59% ± 2.05% a |
P3M | 71.94% ± 3.69% a | 79.68% ± 2.94% ab | 87.01% ± 2.14% a | |
P4 | 58.80% ± 2.10% b | 67.80% ± 2.15% b | 75.92% ± 1.94% b | |
P4M | 61.10% ± 2.15% b | 73.62% ± 2.37% c | 76.11% ± 2.22% b | |
P9 | 55.94% ± 1.91% a | 48.59% ± 2.49% ab | 50.74% ± 2.93% b | |
P9M | 55.70% ± 3.25% a | 52.81% ± 3.29% a | 76.12% ± 2.22% a | |
P10 | 46.64% ± 1.94% b | 43.61% ± 3.76% b | 43.37% ± 2.56% c | |
P10M | 48.99% ± 2.03% b | 46.84% ± 1.11% b | 55.10% ± 5.02% b | |
P3 | XD60 | 75.16% ± 0.91% a | 73.80% ± 3.70% a | 92.06% ± 1.49% a |
P3M | 82.79% ± 3.41% b | 80.14% ± 2.74% b | 92.62% ± 3.45% a | |
P4 | 66.03% ± 1.79% c | 63.53% ± 3.06% c | 84.29% ± 2.87% b | |
P4M | 69.75% ± 3.92% c | 66.47% ± 3.03% c | 86.01% ± 4.03% b | |
P9 | 73.80% ± 1.61% a | 61.76% ± 2.77% c | 75.72% ± 1.33% a | |
P9M | 74.36% ± 3.90% a | 73.50% ± 3.51% a | 74.36% ± 3.90% a | |
P10 | 62.44% ± 1.75% b | 53.54% ± 3.32% d | 71.20% ± 2.31% a | |
P10M | 65.13% ± 2.36% b | 67.48% ± 1.92% b | 65.13% ± 2.36% b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Shen, Y.; Chen, L.; Lai, H.; Yang, H.; Li, G.; Zhao, S.; Ge, F. Effects of Varying Planting Patterns on Wheat Aphids’ Occurrence and the Control Effect of Pesticide Reduction Spraying Process by Unmanned Aerial Vehicle. Appl. Sci. 2023, 13, 11916. https://doi.org/10.3390/app132111916
Gao H, Shen Y, Chen L, Lai H, Yang H, Li G, Zhao S, Ge F. Effects of Varying Planting Patterns on Wheat Aphids’ Occurrence and the Control Effect of Pesticide Reduction Spraying Process by Unmanned Aerial Vehicle. Applied Sciences. 2023; 13(21):11916. https://doi.org/10.3390/app132111916
Chicago/Turabian StyleGao, Haifeng, Yuyang Shen, Li Chen, Hanlin Lai, Hong Yang, Guangkuo Li, Sifeng Zhao, and Feng Ge. 2023. "Effects of Varying Planting Patterns on Wheat Aphids’ Occurrence and the Control Effect of Pesticide Reduction Spraying Process by Unmanned Aerial Vehicle" Applied Sciences 13, no. 21: 11916. https://doi.org/10.3390/app132111916
APA StyleGao, H., Shen, Y., Chen, L., Lai, H., Yang, H., Li, G., Zhao, S., & Ge, F. (2023). Effects of Varying Planting Patterns on Wheat Aphids’ Occurrence and the Control Effect of Pesticide Reduction Spraying Process by Unmanned Aerial Vehicle. Applied Sciences, 13(21), 11916. https://doi.org/10.3390/app132111916