Black Ice Classification with Hyperspectral Imaging and Deep Learning
Abstract
:1. Introduction
2. Related Works
3. Data Collection
4. Methodology
5. Model Architecture
6. Implementation Details
7. Results
7.1. Results and Discussion
7.2. Visualization of Feature Maps
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snow and Ice. Available online: https://ops.fhwa.dot.gov/weather/weather_events/snow_ice.htm (accessed on 29 October 2022).
- Shippert, P. Why Use Hyperspectral Imagery? Photogramm. Eng. Remote Sens. 2004, 70, 377–396. [Google Scholar]
- Amigo, J.M.; Babamoradi, H.; Elcoroaristizabal, S. Hyperspectral image analysis. A tutorial. Anal. Chim. Acta 2015, 896, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.-E. Hyperspectral Satellites and System Design, 1st ed.; CRC Press: London, UK, 2020. [Google Scholar] [CrossRef]
- Qian, S.-E. Optical Satellite Signal Processing and Enhancement; SPIE Press: Bellingham, WA, USA, 2013. [Google Scholar]
- Amigo, J.M. Chapter 1.1—Hyperspectral and multispectral imaging: Setting the scene. In Data Handling in Science and Technology; Amigo, J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 3–16. ISSN 0922-3487; ISBN 9780444639776. [Google Scholar] [CrossRef]
- Guo, R.; Somogyi, A.; Bazin, D.; Bouderlique, E.; Letavernier, E.; Curie, C.; Isaure, M.-P.; Medjoubi, K. Towards routine 3D characterization of intact mesoscale samples by multi-scale and multimodal scanning X-ray tomography. Sci. Rep. 2022, 12, 16924. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhu, S.; Zhou, L.; Zhao, Y.; Bao, Y.; Zhang, C.; He, Y. Detection of Subtle Bruises on Winter Jujube Using Hyperspectral Imaging with Pixel-Wise Deep Learning Method. IEEE Access 2019, 7, 64494–64505. [Google Scholar] [CrossRef]
- Hussain, A.; Pu, H.; Sun, D.-W. Innovative nondestructive imaging techniques for ripening and maturity of fruits—A review of recent applications. Trends Food Sci. Technol. 2018, 72, 144–152. [Google Scholar] [CrossRef]
- Lu, Y.; Saeys, W.; Kim, M.; Peng, Y.; Lu, R. Hyperspectral imaging technology for quality and safety evaluation of horticultural products: A review and celebration of the past 20-year progress. Postharvest Biol. Technol. 2020, 170, 111318. [Google Scholar] [CrossRef]
- ul Rehman, A.; Qureshi, S.A. A review of the medical hyperspectral imaging systems and unmixing algorithms’ in biological tissues. Photodiagnosis Photodyn. Ther. 2020, 33, 102165. [Google Scholar] [CrossRef]
- Saiko, G.; Lombardi, P.; Au, Y.; Queen, D.; Armstrong, D.; Harding, K. Hyperspectral imaging in wound care: A systematic review. Int. Wound J. 2020, 17, 1840–1856. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Jia, S.; Jiang, S.; Lin, Z.; Li, N.; Xu, M.; Yu, S. A survey: Deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 2021, 448, 179–204. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 5518615. [Google Scholar] [CrossRef]
- Chen, C.; Ma, Y.; Ren, G. Hyperspectral Classification Using Deep Belief Networks Based on Conjugate Gradient Update and Pixel-Centric Spectral Block Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 4060–4069. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar]
- Ahmad, M.; Khan, A.M.; Mazzara, M.; Distefano, S.; Ali, M.; Sarfraz, M.S. A Fast and Compact 3-D CNN for Hyperspectral Image Classification. IEEE Geosci. Remote. Sens. Lett. 2020, 19, 5502205. [Google Scholar] [CrossRef]
- Luo, Y.; Zou, J.; Yao, C.; Zhao, X.; Li, T.; Bai, G. HSI-CNN: A Novel Convolution Neural Network for Hyperspectral Image. In Proceedings of the 2018 International Conference on Audio, Language and Image Processing, Shanghai, China, 16–17 July 2018; pp. 464–469. [Google Scholar]
- Park, K.; Cho, B. The Korea Transport Institute. Available online: https://english.koti.re.kr/user/bbs/BD_selectBbs.do?q_bbsCode=1017&q_bbscttSn=20220630102531640&q_clCode=1&q_lang=eng (accessed on 30 October 2023).
- Ma, X.; Ruan, C. Method for black ice detection on roads using tri-wavelength backscattering measurements. Appl. Opt. 2020, 59, 7242–7246. [Google Scholar] [CrossRef]
- Alimasi, N.; Takahashi, S.; Enomoto, H. Development of a mobile optical system to detect road-freezing conditions. Bull. Glaciol. Res. 2012, 30, 41–51. [Google Scholar] [CrossRef]
- Kim, H.G.; Jang, M.S.; Lee, Y.S. A Black Ice Detection Method Using Infrared Camera and YOLO. J. Korea Inst. Inf. Commun. Eng. 2021, 25, 1874–1881. [Google Scholar] [CrossRef]
- Kim, J.; Kim, E.; Kim, D. A Black Ice Detection Method Based on 1-Dimensional CNN Using mmWave Sensor Backscattering. Remote Sens. 2022, 14, 5252. [Google Scholar] [CrossRef]
- Nymphas, E.F.; Ibe, O. Attenuation of millimetre wave radio signal at worst hour rainfall rate in a tropical region: A case study. Niger. Sci. Afr. 2022, 16, e01158. [Google Scholar] [CrossRef]
- Liu, J.; Matolak, D.W.; Güvenç, I.; Mehrpouyan, H. Tropospheric attenuation prediction for future millimeter wave terrestrial systems: Estimating statistics and extremes. Int. J. Commun. Syst. 2022, 35, e5240. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef]
- Park, P.; Han, S. Study of Black Ice Detection Method through Color Image Analysis. J. Platf. Technol. 2021, 9, 90–96. [Google Scholar] [CrossRef]
Layers | Output Shape | Parameters |
---|---|---|
Input | [(None, 25, 25, 10, 1)] | 0 |
Conv3D | [(None, 24, 24, 8, 8)] | 104 |
Conv3D | [(None, 22, 22, 4, 16)] | 5776 |
Reshape | [(None, 22, 22, 64)] | 0 |
Conv2D | [(None, 20, 20, 64)] | 36,928 |
Flatten | [(None, 25,600)] | 0 |
Dense | [(None, 256)] | 6,553,856 |
Dropout | [(None, 256)] | 0 |
Dense | [(None, 128)] | 32,896 |
Dropout | [(None, 128)] | 0 |
Dense | [(None, 2)] | 258 |
Accuracy Score | Our Model | Existing Method 1 | Existing Method 2 |
---|---|---|---|
F1-score (Weighted Average) | 0.96 | 0.82 | 0.93 |
AA (%) | 0.97 | 0.83 | 0.95 |
OA (%) | 0.97 | 0.83 | 0.94 |
KA (%) | 0.94 | 0.78 | 0.90 |
Accuracy Score | Our Model | Existing Method 1 | Existing Method 2 |
---|---|---|---|
F1-score (Weighted Average) | 0.93 | 0.76 | 0.89 |
AA (%) | 0.93 | 0.76 | 0.87 |
OA (%) | 0.95 | 0.77 | 0.87 |
KA (%) | 0.86 | 0.75 | 0.84 |
Accuracy Score | Our Model | Existing Method 1 | Existing Method 2 |
---|---|---|---|
F1-score (Weighted Average) | 0.93 | 0.72 | 0.85 |
AA (%) | 0.93 | 0.72 | 0.83 |
OA (%) | 0.93 | 0.73 | 0.82 |
KA (%) | 0.86 | 0.71 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharyya, C.; Kim, S. Black Ice Classification with Hyperspectral Imaging and Deep Learning. Appl. Sci. 2023, 13, 11977. https://doi.org/10.3390/app132111977
Bhattacharyya C, Kim S. Black Ice Classification with Hyperspectral Imaging and Deep Learning. Applied Sciences. 2023; 13(21):11977. https://doi.org/10.3390/app132111977
Chicago/Turabian StyleBhattacharyya, Chaitali, and Sungho Kim. 2023. "Black Ice Classification with Hyperspectral Imaging and Deep Learning" Applied Sciences 13, no. 21: 11977. https://doi.org/10.3390/app132111977
APA StyleBhattacharyya, C., & Kim, S. (2023). Black Ice Classification with Hyperspectral Imaging and Deep Learning. Applied Sciences, 13(21), 11977. https://doi.org/10.3390/app132111977