An Animated Visualization Method for Large-Scale Unstructured Unsteady Flow
Abstract
:1. Introduction
2. Related Work
2.1. Unsteady Data Compression
2.2. Animation Inter-Frame Delay Optimization
3. Methods
3.1. Analysis of Unsteady Animation Visualization
3.2. Unsteady Animation Visualization Method
3.2.1. Loading Parameter
3.2.2. Selective Data Loading
3.2.3. Mesh Simplification
Non-Three-Dimensional Cells
Three-Dimensional Cells
3.2.4. Interactive Animation
4. Experiment
4.1. Variable Simplification
4.2. Mesh Simplification
4.3. Animation Playback Delay
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Jiang, T.; Wang, C.; Ji, D.; Shi, W.; Xu, B.; Lu, W. Experiment and Numerical Simulation on Hydraulic Loss and Flow Pattern of Low Hump Outlet Conduit with Different Inlet Water Rotation Speeds. Energies 2022, 15, 5371. [Google Scholar] [CrossRef]
- Liu, L.; Silver, D.; Bemis, K. Visualizing events in time-varying scientific data. J. Vis. 2020, 23, 353–368. [Google Scholar] [CrossRef]
- Le, T.L.; Vuong, T.H.N.; Phung, T.H. Numerical Computation of Hydrodynamic Characteristics of an Automated Hand-Washing System. Computation 2023, 11, 167. [Google Scholar] [CrossRef]
- Kniss, J.; McCormick, P.; McPherson, A.; Ahrens, J.; Painter, J.; Keahey, A.; Hansen, C. Interactive texture-based volume rendering for large data sets. IEEE Comput. Graph. Appl. 2001, 21, 52–61. [Google Scholar] [CrossRef]
- Bai, Z.; Tao, Y.; Lin, H. Time-varying volume visualization: A survey. J. Vis. 2020, 23, 745–761. [Google Scholar] [CrossRef]
- Ma, K.L.; Camp, D.M. High performance visualization of time-varying volume data over a wide-area network. In Proceedings of the SC’00: 2000 ACM/IEEE Conference on Supercomputing, Dallas, TX, USA, 4–10 November 2000; p. 29. [Google Scholar]
- Shen, H.W.; Chiang, L.J.; Ma, K.L. A fast volume rendering algorithm for time-varying fields using a time-space partitioning (TSP) tree. In Proceedings of the Visualization ’99 (Cat. No.99CB37067), San Francisco, CA, USA, 24–29 October 1999; pp. 371–545. [Google Scholar]
- Du, Z.; Chiang, Y.J.; Shen, H.W. Out-of-core volume rendering for time-varying fields using a space-partitioning time (SPT) tree. In Proceedings of the 2009 IEEE Pacific Visualization Symposium, Beijing, China, 20–23 April 2009; pp. 73–80. [Google Scholar]
- Ma, K.L.; Shen, H.W. Compression and Accelerated Rendering of Time-Varying Volume Data. 2000. Available online: https://escholarship.org/uc/item/26w9886k (accessed on 17 September 2023).
- Wang, C.; Gao, J.; Li, L.; Shen, H.W. A multiresolution volume rendering framework for large-scale time-varying data visualization. In Proceedings of the Fourth International Workshop on Volume Graphics, Stony Brook, NY, USA, 20–21 June 2005; pp. 11–223. [Google Scholar]
- Hansen, C.D.; Johnson, C.R. Visualization Handbook; Butterworth-Heinemann: Burlington, MA, USA, 2005; pp. 511–530. [Google Scholar]
- Ibarria, L.; Lindstrom, P.; Rossignac, J.; Szymczak, A. Out-of-core compression and decompression of large n-dimensional scalar fields. Comput. Graph. Forum 2003, 22, 343–348. [Google Scholar] [CrossRef]
- Linsen, L.; Pascucci, V.; Duchaineau, M.A.; Hamann, B.; Joy, K.I. Hierarchical representation of time-varying volume data with/sup 4//spl radic/2 subdivision and quadrilinear B-spline wavelets. In Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, Beijing, China, 9–11 October 2002; pp. 346–355. [Google Scholar]
- Wilhelms, J.; Van Gelder, A. Multi-dimensional trees for controlled volume rendering and compression. In Proceedings of the 1994 Symposium on Volume Visualization, Washington, DC, USA, 17–18 October 1994; pp. 27–34. [Google Scholar]
- Silva, C.T.; Comba, J.L.D.; Callahan, S.P.; Bernardon, F.F. A survey of GPU-based volume rendering of unstructured grids. Revista Informática Teórica Apl. 2005, 12, 9–29. [Google Scholar]
- Guthe, S.; Straßer, W. Real-time decompression and visualization of animated volume data. In Proceedings of the Visualization, 2001, VIS’01, San Diego, CA, USA, 21–26 October 2001; pp. 349–572. [Google Scholar]
- Mensmann, J.; Ropinski, T.; Hinrichs, K. A GPU-supported lossless compression scheme for rendering time-varying volume data. In Proceedings of the 8th IEEE/EG International Conference on Volume Graphics, Norrköping, Sweden, 2–3 May 2010; pp. 109–116. [Google Scholar]
- Chiueh, T.C.; Ma, K.L. A parallel pipelined renderer for time-varying volume data. In Proceedings of the 1997 International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN’97), Taipei, Taiwan, 20 December 1997; pp. 9–15. [Google Scholar]
- Yu, H.; Ma, K.L.; Welling, J. A parallel visualization pipeline for terascale earthquake simulations. In Proceedings of the SC’04: 2004 ACM/IEEE Conference on Supercomputing, Pittsburgh, PA, USA, 6–12 November 2004; p. 49. [Google Scholar]
- Wang, R.X.; Wang, R.; Fu, P.; Zhang, J.M. Portable interactive visualization of large-scale simulations in geotechnical engineering using Unity3D. Adv. Eng. Softw. 2020, 148, 102838. [Google Scholar] [CrossRef]
- Bernardon, F.F.; Callahan, S.P.; Comba, J.L.; Silva, C.T. An adaptive framework for visualizing unstructured grids with time-varying scalar fields. Parallel Comput. 2007, 33, 391–405. [Google Scholar] [CrossRef]
- Li, S.; Cai, X.; Wang, W.; Wang, P.; Wang, H.; Shen, E. Large-Scale Flow Field Scientific Visualization; National Defense Industry Press: Arlington, VA, USA, 2013; pp. 20–25. [Google Scholar]
- Munkberg, J.; Chen, W.; Hasselgren, J.; Evans, A.; Shen, T.; Müller, T.; Gao, J.; Fidler, S. Extracting Triangular 3D Models, Materials, and Lighting From Images. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 8270–8280. [Google Scholar]
- Max, N. Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1995, 1, 99–108. [Google Scholar] [CrossRef]
- Fan, L.; Chen, C.; Zhao, S.; Zhang, X.; Wu, Y.; Wang, F. Multi-threaded parallel projection tetrahedral algorithm for unstructured volume rendering. J. Vis. 2021, 24, 261–274. [Google Scholar] [CrossRef]
- Laramee, R.S.; Erlebacher, G.; Garth, C.; Schafhitzel, T.; Theisel, H.; Tricoche, X.; Weinkauf, T.; Weiskopf, D. Applications of texture-based flow visualization. Eng. Appl. Comput. Fluid Mech. 2008, 2, 264–274. [Google Scholar] [CrossRef]
- Vinuesa, R.; Lehmkuhl, O.; Lozano-Durán, A.; Rabault, J. Flow Control in Wings and Discovery of Novel Approaches via Deep Reinforcement Learning. Fluids 2022, 7, 62. [Google Scholar] [CrossRef]
- Guillou, P.; Vidal, J.; Tierny, J. Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for Scalar Data—An Algorithm and A Benchmark. IEEE Trans. Vis. Comput. Graph. 2023; preprint. [Google Scholar] [CrossRef] [PubMed]
Data | Memory Needed | Number of Cells | Timesteps | Variables |
---|---|---|---|---|
Dataset 1 | 38.31 MB | 433,602 | 17 | Velocity, density, pressure, pressure coefficient |
Dataset 2 | 14,300.5 MB | 120,649,590 | 10 | Velocity |
Dataset 3 | 42,593.7 MB | 575,859,614 | 38 | Velocity, density, pressure, pressure coefficient |
Dataset 4 | 42,762.9 MB | 546,400,198 | 40 | Velocity, density, pressure, pressure coefficient |
Data | Original Memory | Memory of Selective Loading | Memory Ratio |
---|---|---|---|
Dataset 1 | 38.31 MB | 32.34 MB | 84.42% |
Dataset 2 | 14,300.5 MB | 14,300.5 MB | 100% |
Dataset 3 | 42,593.7 MB | 39,166.4 MB | 91.95% |
Dataset 4 | 42,762.9 MB | 40,690.8 MB | 95.15% |
Data | Simplified Mesh | Memory Ratio of Simplified Mesh | Combined Optimization | Memory Ratio of Combined Optimization |
---|---|---|---|---|
Dataset 1 | 25.17 MB | 65.70% | 17.99 MB | 46.96% |
Dataset 2 | 109.03 MB | 0.76% | 109.03 MB | 0.76% |
Dataset 3 | 2793.86 MB | 6.56% | 2290.07 MB | 5.38% |
Dataset 4 | 435.96 MB | 1.02% | 353.93 MB | 0.83% |
Data | Total 3D Cells | 3D Cells Ratio | Common Method | Hash-Based Method | Improvement Ratio |
---|---|---|---|---|---|
Dataset 2 | 120,649,590 | 100% | 114 s | 32.5 s | 350% |
Dataset 3 | 532,217,496 | 92.4% | 883 s | 333 s | 265% |
Dataset 4 | 540,141,070 | 98.9% | 2879 s | 1213 s | 237% |
Data | Method (1) | Method (2) | Method (3) |
---|---|---|---|
Dataset 1 | 67 ms | 55 ms | 51 ms |
Dataset 2 | ms | ms | 83 ms |
Dataset 3 | ms | ms | 92 ms |
Dataset 4 | ms | ms | 55 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Yang, C.; Wu, Y.; He, Z.; Hu, Y. An Animated Visualization Method for Large-Scale Unstructured Unsteady Flow. Appl. Sci. 2023, 13, 12062. https://doi.org/10.3390/app132112062
Tian X, Yang C, Wu Y, He Z, Hu Y. An Animated Visualization Method for Large-Scale Unstructured Unsteady Flow. Applied Sciences. 2023; 13(21):12062. https://doi.org/10.3390/app132112062
Chicago/Turabian StyleTian, Xiaokun, Chao Yang, Yadong Wu, Zhouqiao He, and Yan Hu. 2023. "An Animated Visualization Method for Large-Scale Unstructured Unsteady Flow" Applied Sciences 13, no. 21: 12062. https://doi.org/10.3390/app132112062
APA StyleTian, X., Yang, C., Wu, Y., He, Z., & Hu, Y. (2023). An Animated Visualization Method for Large-Scale Unstructured Unsteady Flow. Applied Sciences, 13(21), 12062. https://doi.org/10.3390/app132112062