Biocompatibility and Osteo/Odontogenic Potential of Various Bioactive Root-End Filling Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Material Extracts
2.2. Cell Viability Assay
2.3. Live/Dead Assay
2.4. Alkaline Phosphatase Activity
2.5. Quantitative Real-Time PCR
2.6. Statistical Analysis
3. Results
3.1. Cell Viability
3.2. ALP Activity
3.3. Quantitative Real-Time PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Int. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 6–27. [Google Scholar] [CrossRef]
- Shahi, S.; Fakhri, E.; Yavari, H.; Maleki, D.S.; Salatin, S.; Khezri, K. Portland Cement: An Overview as a Root Repair Material. BioMed Res. Int. 2022, 2022, 3314912. [Google Scholar] [CrossRef]
- Ribeiro, D.A.; Hungaro Duarte, M.A.; Matsumoto, M.A.; Alencar Marques, M.E.; Favero Salvadori, D.M. Biocompatibility In Vitro Tests of Mineral Trioxide Aggregate and Regular and White Portland Cements. J. Endod. 2005, 31, 605–607. [Google Scholar] [CrossRef] [PubMed]
- de Deus, G.; Ximenes, R.; Gurgel-Filho, E.D.; Plotkowski, M.C.; Coutinho-Filho, T. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int. Endod. J. 2005, 38, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Khalil, I.; Isaac, J.; Chaccar, C.; Sautier, J.; Berdal, A.; Naaman, N.; Naaman, A. Biocompatibility assessment of modified Portland cement in comparison with MTA®: In vivo and in vitro studies. Saudi Endod. J. 2012, 2, 6–13. [Google Scholar] [CrossRef]
- Bhagat, D.; Sunder, R.K.; Devendrappa, S.N.; Vanka, A.; Choudaha, N. A comparative evaluation of ProRoot mineral trioxide aggregate and Portland cement as a pulpotomy medicament. J. Indian Soc. Pedod. Prev. Dent. 2016, 34, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Nosrat, A.; Seifi, A.; Asgary, S. Pulpotomy in caries-exposed immature permanent molars using calcium-enriched mixture cement or mineral trioxide aggregate, a randomized clinical trial. Int. J. Paediatr. Dent. 2013, 23, 56–63. [Google Scholar] [CrossRef]
- Tawil, P.Z.; Duggan, D.J.; Galicia, J.C. MTA: A Clinical Review. Compend. Contin. Educ. Dent. 2015, 36, 247–264. [Google Scholar] [PubMed]
- Olcay, K.; Taşli, P.N.; Güven, E.P.; Ülker, G.M.Y.; Öğüt, E.E.; Çiftçioğlu, E.; Kiratli, B.; Şahin, F. Effect of a novel bioceramic root canal sealer on the angiogenesis-enhancing potential of assorted human odontogenic stem cells compared with principal tricalcium silicate-based cements. J. Appl. Sci. 2020, 28, e20190215. [Google Scholar] [CrossRef] [PubMed]
- Pekozer, G.G.; Ramazanoglu, M.; Schlegel, K.A.; Kok, F.N.; Kose, G.T. Role of STRO-1 sorting of porcine dental germ stem cells in dental stem cell-mediated bone tissue engineering. Artif. Cells Nanomed. Biotechnol. 2018, 46, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Ercal, P.; Cayir, F.; Pekozer, G.G.; Kose, G.T. Osteo/odontogenic differentiation analysis of dental stem cells from tooth germ, apical papilla, and dental follicle. Oral Sci. Int. 2022, 19, 180–192. [Google Scholar] [CrossRef]
- Sismanoglu, S.; Ercal, P. Effects of calcium silicate-based cements on odonto/osteogenic differentiation potential in mesenchymal stem cells. Aust. Dent. J. 2023, 49, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Sismanoglu, S.; Ercal, P. Dentin-pulp tissue regeneration approaches in dentistry: An overview and current trends. Adv. Exp. Med. Biol. 2020, 1298, 79–103. [Google Scholar]
- Yalvac, M.E.; Ramazanoglu, M.; Rizvanov, A.A.; Sahin, F.; Bayrak, O.F.; Salli, U.; Palotás, A.; Kose, G.T. Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: Implications in neo-vascularization, osteo-, adipo-and neurogenesis. Pharmacogenomics J. 2020, 10, 105–113. [Google Scholar] [CrossRef]
- Ramazanoglu, M.; Moest, T.; Ercal, P.; Polyviou, Z.; Herrmann, K.; Gurel Pekozer, G.; Molenberg, A.; Lutz, R.; Kose, G.T.; Neukam, F.W.; et al. The effect of polyethylenglycol gel on the delivery and osteogenic differentiation of homologous tooth germ–derived stem cells in a porcine model. Clin. Oral Investig. 2021, 25, 3043–3057. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.F.; Bosso, R.; Ferino, R.; Tanomaru-Filho, M.; Bernardi, M.I.B.; Guerreiro-Tanomaru, J.M.; Cerri, P.S. Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: Evaluation of physicochemical and biological properties. J. Biomed. Mater. Res. Part A 2014, 102, 4336–4345. [Google Scholar] [CrossRef]
- Babaki, D.; Yaghoubi, S.; Matin, M.M. The effects of mineral trioxide aggregate on osteo/odontogenic potential of mesenchymal stem cells: A comprehensive and systematic literature review. Biomater. Investig. Dent. 2020, 7, 175–185. [Google Scholar] [CrossRef]
- Song, W.; Sun, W.; Chen, L.; Yuan, Z. In vivo Biocompatibility and Bioactivity of Calcium Silicate-Based Bioceramics in Endodontics. Front. Bioeng. Biotechnol. 2020, 8, 580954. [Google Scholar] [CrossRef]
- Khedmat, S.; Sarraf, P.; Seyedjafari, E.; Sanaei-rad, P.; Noori, F. Comparative evaluation of the effect of cold ceramic and MTA-Angelus on cell viability, attachment and differentiation of dental pulp stem cells and periodontal ligament fibroblasts: An in vitro study. BMC Oral Health 2020, 21, 628. [Google Scholar] [CrossRef]
- de Oliveira, N.G.; de Souza Araújo, P.R.; da Silveira, M.T.; Sobral, A.P.V.; de Vasconcelos Carvalho, M. Comparison of the biocompatibility of calcium silicate-based materials to mineral trioxide aggregate: Systematic review. Front. Bioeng. Biotechnol. 2018, 12, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Catalá, C.J.; Collado-González, M.; García-Bernal, D.; Oñate-Sánchez, R.E.; Forner, L.; Llena, C.; Lozano, A.; Castelo-Baz, P.; Moraleda, J.M.; Rodríguez-Lozano, F.J. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int. Endod. J. 2017, 50, e63–e72. [Google Scholar] [CrossRef]
- Maher, A.; Núnez-Toldrà, R.; Carrio, N.; Ferres-Padro, E.; Ali, H.; Montori, S.; Al Madhoun, A. The Effect of Commercially Available Endodontic Cements and Biomaterials on Osteogenic Differentiation of Dental Pulp Pluripotent-Like Stem Cells. J. Dent. 2018, 6, 48. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, S.; Lee, S.; Kim, H.C.; Kim, E. In Vitro Comparison of Biocompatibility of Calcium Silicate-Based Root Canal Sealers. Materials 2019, 12, 2411. [Google Scholar] [CrossRef] [PubMed]
- Prins, H.J.; Braat, A.K.; Gawlitta, D.; Dhert, W.J.A.; Egan, D.A.; Tijssen-Slump, E.; Yuan, H.; Coffer, P.J.; Rozemuller, H.; Martens, A.C. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Res. 2014, 12, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Gluhak-Heinrich, J.; Wang, Y.H.; Wu, Y.M.; Chuang, H.H.; Chen, L.; Yuan, G.H.; Dong, J.; Gay, I.; MacDougall, M. Runx2, osx, and dspp in tooth development. J. Dent. Res. 2009, 88, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Regulation of Osteoblast and Odontoblast Differentiation by RUNX2. J. Oral Biosci. 2010, 52, 22–25. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Ramachandran, A.; George, A. DSPP Is Essential for Normal Development of the Dental-Craniofacial Complex. J. Dent. Res. 2016, 95, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kong, H.; Yao, N.; Yu, Q.; Wang, P.; Lin, Y.; Wang, J.; Kuang, R.; Zhao, X.; Xu, J.; et al. The role of runt-related transcription factor 2 (Runx2) in the late stage of odontoblast differentiation and dentin formation. Biochem. Biophys. Res. Commun. 2011, 410, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lozano, F.J.; López-García, S.; García-Bernal, D.; Sanz, J.L.; Lozano, A.; Pecci-Lloret, M.P.; Melo, M.; López-Ginés, C.; Forner, L. Cytocompatibility and bioactive properties of the new dual-curing resin-modified calcium silicate-based material for vital pulp therapy. Clin. Oral Investig. 2021, 25, 5009–5024. [Google Scholar] [CrossRef]
- Guven, E.P.; Yalvac, M.E.; Sahin, F.; Yazici, M.M.; Rizvanov, A.A.; Bayirli, G. Effect of dental materials calcium hydroxide-containing cement, mineral trioxide aggregate, and enamel matrix derivative on proliferation and differentiation of human tooth germ stem cells. J. Endod. 2011, 37, 650–656. [Google Scholar] [CrossRef] [PubMed]
Product | Composition | Batch Number |
---|---|---|
MTA-Angelus (Angelus Industria de Produtos Odontologicos, Londrina, Brazil) | Powder: tricalcium silicate, dicalcium silicate, tricalcium aluminate, calcium oxide, bismuth oxide. Liquid: distilled water. | 41,804 |
BIOfactor MTA (Imicryl Dental, Konya, Turkey) | Powder: tricalcium silicate, dicalcium silicate, tricalcium aluminate, ytterbium oxide as a radiopacifier. Liquid: 0.5–3% hydrosoluble carboxylated polymer, demineralized water. | 19,163 |
Medcem-MTA (Medcem GmbH, Wien, Austria) | Portland cement (tricalcium silicate, dicalcium silicate, calcium oxide) and zirconium oxide as radiopacifier. | RX181020 |
Pure Portland Cement (Medcem GmbH, Wien, Austria) | Portland cement (tricalcium silicate, dicalcium silicate, calcium oxide). | MTZ171002 |
Well-Root ST (Vericom, Chuncheon-si, Gangwon-Do, Republic of Korea) | Calcium aluminosilicate, zirconium oxide, filler, thickening agent. | WR996100 |
Genes | Primer Sequence (5′–3′) | Product Size (Base Pairs) | Annealing Temperature (°C) |
---|---|---|---|
β-actin | F: TCGTCCACCGCAAATGCTTC | 211 | 56.0 |
R: TGCTGTCACCTTCACCGTTC | 56.0 | ||
DMP-1 | F: CAGAAGCGGTGAGGACTCTG | 393 | 56.0 |
R: CTGGCATACCCCACTGATCG | 56.0 | ||
DSPP | F: GAAGGCAGTATCACAGAACTCA | 298 | 56.0 |
R: GAATGGCCCATGCTATTGCC | 56.0 | ||
RUNX2 | F: AGTTTGTTCTCTGACCGCCTCA | 230 | 56.0 |
R: ACCTGCCTGGCTTTTCTTACT | 56.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ercal, P.; Sismanoglu, S. Biocompatibility and Osteo/Odontogenic Potential of Various Bioactive Root-End Filling Materials. Appl. Sci. 2023, 13, 12095. https://doi.org/10.3390/app132212095
Ercal P, Sismanoglu S. Biocompatibility and Osteo/Odontogenic Potential of Various Bioactive Root-End Filling Materials. Applied Sciences. 2023; 13(22):12095. https://doi.org/10.3390/app132212095
Chicago/Turabian StyleErcal, Pinar, and Soner Sismanoglu. 2023. "Biocompatibility and Osteo/Odontogenic Potential of Various Bioactive Root-End Filling Materials" Applied Sciences 13, no. 22: 12095. https://doi.org/10.3390/app132212095
APA StyleErcal, P., & Sismanoglu, S. (2023). Biocompatibility and Osteo/Odontogenic Potential of Various Bioactive Root-End Filling Materials. Applied Sciences, 13(22), 12095. https://doi.org/10.3390/app132212095