Inspection for Voids in the Grout below the Protective Duct of an External Post-Tensioning Bridge Tendon Using a THz A-Scanner
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, B. Tendon failure raises questions about grout in posttensioned bridges. Civ. Eng. 2007, 77, 17–18. [Google Scholar]
- Taeby, M.; Mehrabi, A.B. Risk-based selection of inspection method for external post-tensioning system of bridges. Appl. Sci. 2022, 12, 7103. [Google Scholar] [CrossRef]
- Terzioglu, T.; Karthik, M.M.; Hurlebaus, S.; Hueste, M.B.D. Nondestructive evaluation of external post-tensioning systems to detect grout defects. J. Struct. Eng. 2019, 145, 05018002. [Google Scholar] [CrossRef]
- Martin, J.; Broughton, K.J.; Giannopolous, A.; Hardy, M.S.A.; Forde, M.C. Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams. NDT E Int. 2001, 34, 107–113. [Google Scholar] [CrossRef]
- Angst, U.M. Challenges and opportunities in corrosion of steel in concrete. Mater. Struct. 2018, 51, 4. [Google Scholar] [CrossRef]
- FHWA. Post-Tensioning Tendon Installation and Grouting Manual; Federal Highway Administration: Washington, DC, USA, 2013; p. 61. [Google Scholar]
- Im, S.B.; Hurlebaus, S. Non-destructive testing methods to identify voids in external post-tensioned tendons. KSCE J. Civ. Eng. 2012, 16, 388–397. [Google Scholar] [CrossRef]
- Muldoon, R.; Chalker, A.; Forde, M.C.; Ohtsu, M.; Kunisue, F. Identifying voids in plastic ducts in post-tensioning prestressed concrete members by resonant frequency of impact–echo, SIBIE and tomography. Constr. Build. Mater. 2007, 21, 527–537. [Google Scholar] [CrossRef]
- Hurlebaus, S.; Hueste, M.B.D.; Karthik, M.M.; Terzioglu, T. Condition Assessment of Bridge Post-Tensioning and Stay Cable Systems Using NDE Methods; Transportation Research Board of the National Academies, Texas A&M Transportation Institute: College Station, TX, USA, 2016. [Google Scholar]
- Zhong, H.; Xu, J.; Xie, X.; Yuan, T.; Reightler, R.; Madaras, E.; Zhang, X.-C. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. 2005, 5, 203–208. [Google Scholar] [CrossRef]
- Stoik, C.; Bohn, M.; Blackshire, J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT E Int. 2010, 43, 106–115. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging—Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Yasui, T.; Saneyoshi, E.; Araki, T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett. 2005, 87, 061101. [Google Scholar] [CrossRef]
- Hochrein, T.; Wilk, R.; Mei, M.; Holzwarth, R.; Krumbholz, N.; Koch, M. Optical sampling by laser cavity tuning. Opt. Express 2010, 18, 1613–1617. [Google Scholar] [CrossRef]
- Kim, Y.; Yee, D.-S. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling. Opt. Lett. 2010, 35, 3715–3717. [Google Scholar] [CrossRef] [PubMed]
- Duling, I.N.; White, J.; Williamson, S. High speed imaging with time domain terahertz. In Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Rome, Italy, 5–10 September 2010. [Google Scholar]
- Schulkin, B.; Brigada, D.; St. James, J.; Tongue, T.; Zhang, X.-C. Progress toward handheld THz sensing. In Proceedings of the 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Houston, TX, USA, 2–7 October 2011. [Google Scholar]
- Jin, K.H.; Kim, Y.-G.; Cho, S.H.; Ye, J.C.; Yee, D.-S. High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation. Opt. Express 2012, 20, 25432–25440. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, S.; Tani, M.; Abe, H.; Sakai, K.; Ozeki, H.; Saito, S. High-resolution terahertz spectroscopy by a compact radiation source based on photomixing with diode lasers in a photoconductive antenna. J. Mol. Spectrosc. 1998, 187, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Mouret, G.; Matton, S.; Bocquet, R.; Bigourd, D.; Hindle, F.; Cuisset, A.; Lampin, J.F.; Blary, K.; Lippens, D. THz media characterization by means of coherent homodyne detection, results and potential applications. Appl. Phys. B 2007, 89, 395–399. [Google Scholar] [CrossRef]
- Am Weg, C.; von Spiegel, W.; Henneberger, R.; Zimmermann, R.; Loeffler, T.; Roskos, H.G. Fast active THz camera with ranging capabilities. J. Infrared Millim. Terahertz Waves 2009, 30, 1281–1296. [Google Scholar] [CrossRef]
- Roggenbuck, A.; Schmitz, H.; Deninger, A.; Mayorga, I.C.; Hemberger, J.; Güsten, R.; Grüninger, M. Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples. New J. Phys. 2010, 12, 043017. [Google Scholar] [CrossRef]
- Cooper, K.B.; Dengler, R.J.; Llombart, N.; Thomas, B.; Chattopadhyay, G.; Siegel, P.H. THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 169–182. [Google Scholar] [CrossRef]
- Cristofani, E.; Friederich, F.; Wohnsiedler, S.; Matheis, C.; Jonuscheit, J.; Vandewal, M.; Beigang, R. Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection. Opt. Eng. 2014, 53, 031211. [Google Scholar] [CrossRef]
- Brown, E.R.; McIntosh, K.A.; Nichols, K.B.; Dennis, C.L. Photomixing up to 3.8-THz in low-temperature-grown GaAs. Appl. Phys. Lett. 1995, 66, 285–287. [Google Scholar] [CrossRef]
- Verghese, S.; McIntosh, K.A.; Calawa, S.; Dinatale, W.F.; Duerr, E.K.; Molvar, K.A. Generation and detection of coherent terahertz waves using two photomixers. Appl. Phys. Lett. 1998, 73, 3824–3826. [Google Scholar] [CrossRef]
- Wilk, R.; Breitfeld, F.; Mikulics, M.; Koch, M. Continuous wave terahertz spectrometer as a noncontact thickness measuring device. Appl. Opt. 2008, 47, 3023–3026. [Google Scholar] [CrossRef] [PubMed]
- Scheller, M.; Baaske, K.; Koch, M. Multifrequency continuous wave terahertz spectroscopy for absolute thickness determination. Appl. Phys. Lett. 2010, 96, 151112. [Google Scholar] [CrossRef]
- Ryu, H.-C.; Kim, N.; Han, S.-P.; Ko, H.; Park, J.-W.; Moon, K.; Park, K.H. Simple and cost-effective thickness measurement terahertz system based on a compact 1.55 μm λ/4 phase-shifted dual-mode laser. Opt. Express 2012, 20, 25990–25999. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Kim, N.; Shin, J.-H.; Yoon, Y.-J.; Han, S.-P.; Park, K.H. Continuous-wave terahertz system based on a dual-mode laser for real-time non-contact measurement of thickness and conductivity. Opt. Express 2014, 22, 2259–2266. [Google Scholar] [CrossRef]
- Lee, I.-M.; Kim, N.; Lee, E.S.; Han, S.-P.; Moon, K.; Park, K.H. Frequency modulation based continuous-wave terahertz homodyne system. Opt. Express 2015, 23, 846–858. [Google Scholar] [CrossRef] [PubMed]
- Yee, D.-S.; Yahng, J.S.; Park, C.-S.; Lee, H.D.; Kim, C.-S. High-speed broadband frequency sweep of continuous-wave terahertz radiation. Opt. Express 2015, 23, 14806–14814. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, M.; Minneman, M.P.; Ensher, J.; Zabihian, B.; Sattmann, H.; Boschert, P.; Hoover, E.; Leitgeb, R.A.; Crawford, M.; Drexler, W. Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length. Opt. Express 2015, 22, 2632–2655. [Google Scholar] [CrossRef]
- Gilbert, S.L.; Swann, W.C.; Wang, C.-M. Hydrogen Cyanide H13C14N Absorption Reference for 1530 nm to 1560 nm Wavelength Calibration—SRM 2519. NIST Spec. Publ. 1998, 260, 137. [Google Scholar]
- Ung, B.S.-Y.; Fumeaux, C.; Lin, H.; Fischer, B.M.; Ng, B.W.-H.; Abbott, D. Low-cost ultra-thin broadband terahertz beam-splitter. Opt. Express 2012, 20, 4968–4978. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics; Wiley-Interscience: New York, NY, USA, 1991; pp. 330–335. [Google Scholar]
- Yahng, J.S.; Park, C.-S.; Lee, H.D.; Kim, C.-S.; Yee, D.-S. High-speed frequency-domain terahertz coherence tomography. Opt. Express 2016, 24, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yee, D.-S.; Yahng, J.S.; Cho, S.H. Inspection for Voids in the Grout below the Protective Duct of an External Post-Tensioning Bridge Tendon Using a THz A-Scanner. Appl. Sci. 2023, 13, 12119. https://doi.org/10.3390/app132212119
Yee D-S, Yahng JS, Cho SH. Inspection for Voids in the Grout below the Protective Duct of an External Post-Tensioning Bridge Tendon Using a THz A-Scanner. Applied Sciences. 2023; 13(22):12119. https://doi.org/10.3390/app132212119
Chicago/Turabian StyleYee, Dae-Su, Ji Sang Yahng, and Seung Hyun Cho. 2023. "Inspection for Voids in the Grout below the Protective Duct of an External Post-Tensioning Bridge Tendon Using a THz A-Scanner" Applied Sciences 13, no. 22: 12119. https://doi.org/10.3390/app132212119
APA StyleYee, D. -S., Yahng, J. S., & Cho, S. H. (2023). Inspection for Voids in the Grout below the Protective Duct of an External Post-Tensioning Bridge Tendon Using a THz A-Scanner. Applied Sciences, 13(22), 12119. https://doi.org/10.3390/app132212119