An Elastic-Window-Based Method for the Underdetermined Problem in Linear Spectral Unmixing to Enhance the Spatial Resolution of the Normalized Difference Vegetation Index Time Series
Abstract
:1. Introduction
2. Problem Analysis of Linear Spectral Unmixing
2.1. Inversion of Inner Part Values
2.2. Imperfection in Approximating Adjacent Land Region
3. Solution
3.1. Iterative Approximation Procedure
3.2. The Elastic-Window-Based Algorithm
4. Experiment
4.1. Study Area and Data
4.2. Results and Discussion
4.2.1. Local Simulation Results of the Coarse Pixel Neighborhood
4.2.2. Statistics for Underdetermined Pixels in Globe Scale
4.2.3. Performance of Elastic-Window-Based Algorithm
4.2.4. MODIS-NDVI Downscaling Based on the Elastic Window
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, P.; Miller, J.R.; Spanner, M. Forest canopy closure from classification and spectral unmixing of scene components-multisensor evaluation of an open canopy. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1067–1080. [Google Scholar] [CrossRef]
- Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A method for integrating modis and landsat data for systematic monitoring of forest cover and change in the Congo basin. Remote Sens. Environ. 2008, 112, 2495–2513. [Google Scholar] [CrossRef]
- Arai, E.; Shimabukuro, Y.E.; Pereira, G.; Vijaykumar, N.L. A multi-resolution multi-temporal technique for detecting and mapping deforestation in the Brazilian Amazon rainforest. Remote Sens. 2011, 3, 1943–1956. [Google Scholar] [CrossRef]
- Li, B.; Fang, X.; Ye, Y.; Zhang, X. Accuracy assessment of global historical cropland datasets based on regional reconstructed historical data—A case study in northeast China. Sci. China Earth Sci. 2010, 53, 1689–1699. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of modis data. Remote Sens. Environ. 2004, 93, 412–422. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A pok-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Wardlow, B.; Egbert, S.; Kastens, J. Analysis of time-series modis 250 m vegetation index data for crop classification in the u.S. Central great plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, K.; Zheng, X.; Jiang, T. Temporal dynamics of spatial heterogeneity over cropland quantified by time-series ndvi, near infrared and red reflectance of landsat 8 oli imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 139–145. [Google Scholar] [CrossRef]
- Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [Google Scholar] [CrossRef]
- Shahriar Pervez, M.; Budde, M.; Rowland, J. Mapping irrigated areas in afghanistan over the past decade using modis ndvi. Remote Sens. Environ. 2014, 149, 155–165. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the landsat andmodis surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, H.; Song, H.; Wang, J.; Song, C. Unified fusion of remote-sensing imagery: Generating simultaneously high-resolution synthetic spatial–temporal–spectral earth observations. Remote Sens. Lett. 2013, 4, 561–569. [Google Scholar] [CrossRef]
- Huet, A.R.; Liu, H.Q.; Batchily, K.; Leeuwen, W.v. A comparison of vegetation indices over a global set of tm images for eos-modis. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.; Reed, B. A comparative analysis of the global land cover 2000 and modis land cover data sets. Remote Sens. Environ. 2005, 94, 123–132. [Google Scholar] [CrossRef]
- Rao, C.V.; Malleswara Rao, J.; Senthil Kumar, A.; Dadhwal, V.K. Fast spatiotemporal data fusion: Merging liss iii with awifs sensor data. Int. J. Remote Sens. 2014, 35, 8323–8344. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Garg, R.D. A comparison of different regression models for downscaling landsat and modis land surface temperature images over heterogeneous landscape. Adv. Space Res. 2014, 54, 655–669. [Google Scholar] [CrossRef]
- Gong, P.; Yu, L.; Li, C.; Wang, J.; Liang, L.; Li, X.; Ji, L.; Bai, Y.; Cheng, Y.; Zhu, Z. A new research paradigm for global land cover mapping. Ann. GIS 2016, 22, 87–102. [Google Scholar] [CrossRef]
- Han, G.; Chen, J.; He, C.; Li, S.; Wu, H.; Liao, A.; Peng, S. A web-based system for supporting global land cover data production. ISPRS J. Photogramm. Remote Sens. 2015, 103, 66–80. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C. Updating the 2001 national land cover database impervious surface products to 2006 using landsat imagery change detection methods. Remote Sens. Environ. 2010, 114, 1676–1686. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P. The availability of cloud-free landsat etm+ data over the conterminous united states and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Gevaert, C.M.; García-Haro, F.J. A comparison of starfm and an unmixing-based algorithm for landsat and modis data fusion. Remote Sens. Environ. 2015, 156, 34–44. [Google Scholar] [CrossRef]
- Singh, D. Generation and evaluation of gross primary productivity using landsat data through blending with modis data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 59–69. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of dense time series synthetic landsat data through data blending with modis using a spatial and temporal adaptive reflectance fusion model. Remote Sens. Environ. 2009, 113, 1988–1999. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on landsat and modis. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Shen, H.; Wu, P.; Liu, Y.; Ai, T.; Wang, Y.; Liu, X. A spatial and temporal reflectance fusion model considering sensor observation differences. Int. J. Remote Sens. 2013, 34, 4367–4383. [Google Scholar] [CrossRef]
- Wu, P.; Shen, H.; Ai, T.; Liu, Y. Land-surface temperature retrieval at high spatial and temporal resolutions based on multi-sensor fusion. Int. J. Digit. Earth 2013, 6, 113–133. [Google Scholar] [CrossRef]
- Zurita-Milla, R.; Kaiser, G.; Clevers, J.G.P.W.; Schneider, W.; Schaepman, M.E. Downscaling time series of meris full resolution data to monitor vegetation seasonal dynamics. Remote Sens. Environ. 2009, 113, 1874–1885. [Google Scholar] [CrossRef]
- Kerdiles, H.; Grondona, M.O. Noaa-avhrr ndvi decomposition and subpixel classification using linear mixing in the Argentinean pampa. Int. J. Remote Sens. 1995, 16, 1303–1325. [Google Scholar] [CrossRef]
- Oleson, K.W.; Sarlin, S.; Garrison, J.; Smith, S.; Privette, J.L.; Emery, W.J. Unmixing multiple land-cover type reflectances from coarse spatial resolution satellite data. Remote Sens. Environ. 1995, 54, 98–112. [Google Scholar] [CrossRef]
- Asner, G.P.; Wessman, C.A.; Privette, J.L. Unmixing the directional reflectances of avhrr sub-pixel landcovers. IEEE Trans. Geosci. Remote Sens. 1997, 35, 868–878. [Google Scholar] [CrossRef]
- Zurita-Milla, R.; Clevers, J.; Schaepman, M.E. Unmixing-based landsat tm and meris fr data fusion. IEEE Geosci. Remote Sens. Lett. 2008, 5, 453–457. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- He, F.; Gaston, K.J. Estimating abundance from occurrence: An underdetermined problem. Am. Nat. 2007, 170, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-based multisensor multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Amorós-López, J.; Gómez-Chova, L.; Alonso, L.; Guanter, L.; Zurita-Milla, R.; Moreno, J.; Camps-Valls, G. Multitemporal fusion of landsat/tm and envisat/meris for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 132–141. [Google Scholar] [CrossRef]
- Zhang, W.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Lei, G.; Qin, Z.; Huang, C. An enhanced spatial and temporal data fusion model for fusing landsat and modis surface reflectance to generate high temporal landsat-like data. Remote Sens. 2013, 5, 5346–5368. [Google Scholar] [CrossRef]
- Wu, M.; Huang, W.; Niu, Z.; Wang, C. Generating daily synthetic landsat imagery by combining landsat and modis data. Sensors 2015, 15, 24002–24025. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, C.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Hao, P. An improved high spatial and temporal data fusion approach for combining landsat and modis data to generate daily synthetic landsat imagery. Inf. Fusion 2016, 31, 14–25. [Google Scholar] [CrossRef]
- Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J. A spiral-based downscaling method for generating 30 m time series image data. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 817–820. [Google Scholar] [CrossRef]
- Stigler, S.M. Gauss and the invention of least squares. Ann. Stat. 1981, 9, 465–474. [Google Scholar] [CrossRef]
- Maselli, F. Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses. Remote Sens. Environ. 2001, 75, 29–38. [Google Scholar] [CrossRef]
1-1 | |||||||||
Num. | Pixel Code | Crop | Forest | Grass | Shrub | Wetland | Water | Built-Up | Bare Land |
1 | A | 42 | 17 | 3 | 9 | 0 | 0 | 7 | 22 |
2 | b2 | 78 | 2 | 20 | 0 | 0 | 0 | 0 | 0 |
3 | b3 | 82 | 0 | 0 | 0 | 0 | 0 | 18 | 0 |
4 | b4 | 88 | 4 | 0 | 0 | 0 | 0 | 8 | 0 |
5 | c2 | 83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | c4 | 1 | 61 | 5 | 0 | 28 | 3 | 1 | 0 |
7 | c2 | 90 | 0 | 0 | 0 | 0 | 0 | 10 | 0 |
8 | c3 | 85 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | c4 | 38 | 13 | 1 | 0 | 8 | 40 | 0 | 0 |
1-2 | |||||||||
Num. | Pixel Code | Crop | Forest | Grass | Shrub | Wetland | Water | Built-Up | Bare Land |
1 | B | 5 | 12 | 69 | 2 | 4 | 8 | 0 | 0 |
2 | b7 | 35 | 10 | 26 | 0 | 9 | 20 | 0 | 0 |
3 | b8 | 32 | 25 | 31 | 0 | 0 | 12 | 0 | 0 |
4 | b9 | 69 | 12 | 12 | 0 | 0 | 8 | 0 | 0 |
5 | c7 | 3 | 14 | 71 | 0 | 5 | 7 | 0 | 0 |
6 | c9 | 50 | 19 | 15 | 0 | 0 | 0 | 4 | 13 |
7 | d7 | 18 | 4 | 78 | 0 | 0 | 0 | 0 | 0 |
8 | d8 | 75 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
9 | d9 | 87 | 5 | 4 | 0 | 2 | 2 | 0 | 0 |
1-3 | |||||||||
Num. | Pixel Code | Crop | Forest | Grass | Shrub | Wetland | Water | Built-Up | Bare Land |
1 | C | 26 | 2 | 0 | 13 | 40 | 1 | 10 | 8 |
2 | d5 | 0 | 0 | 0 | 0 | 36 | 64 | 0 | 0 |
3 | d6 | 5 | 0 | 10 | 0 | 70 | 15 | 0 | 0 |
4 | d7 | 19 | 4 | 77 | 0 | 0 | 0 | 0 | 0 |
5 | e5 | 17 | 0 | 0 | 0 | 44 | 39 | 0 | 0 |
6 | e7 | 43 | 2 | 56 | 0 | 0 | 0 | 0 | 0 |
7 | f5 | 97 | 0 | 2 | 0 | 1 | 0 | 0 | 0 |
8 | f6 | 95 | 0 | 5 | 0 | 0 | 0 | 0 | 0 |
9 | f7 | 64 | 1 | 35 | 0 | 0 | 0 | 0 | 0 |
1-4 | |||||||||
Num. | Pixel Code | Crop | Forest | Grass | Shrub | Wetland | Water | Built-Up | Bare Land |
1 | D | 81 | 0 | 19 | 0 | 0 | 0 | 0 | 0 |
2 | e7 | 43 | 2 | 56 | 0 | 0 | 0 | 0 | 0 |
3 | e8 | 94 | 1 | 5 | 0 | 0 | 0 | 0 | 0 |
4 | e9 | 80 | 0 | 2 | 0 | 5 | 1 | 12 | 0 |
5 | f7 | 64 | 1 | 35 | 0 | 0 | 0 | 0 | 0 |
6 | f9 | 85 | 0 | 8 | 0 | 0 | 0 | 7 | 0 |
7 | g7 | 93 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
8 | g8 | 77 | 0 | 22 | 0 | 0 | 0 | 1 | 0 |
9 | g9 | 93 | 0 | 3 | 0 | 0 | 0 | 5 | 0 |
Num. | Name | Num. | Name | Num. | Name | Num. | Name | Num. | Name | Num. | Name |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | N07_65 | 11 | S23_15 | 21 | N33_40 | 31 | N38_05 | 41 | N45_30 | 51 | N47_60 |
2 | N11_60 | 12 | S20_00 | 22 | N32_50 | 32 | N32_10 | 42 | N43_40 | 52 | N51_70 |
3 | N15_55 | 13 | N18_05 | 23 | N35_50 | 33 | N29_15 | 43 | N47_40 | 53 | N50_25 |
4 | N11_45 | 14 | N12_30 | 24 | N36_40 | 34 | N35_25 | 44 | N47_50 | 54 | N50_40 |
5 | N14_40 | 15 | N17_45 | 25 | S34_30 | 35 | N30_30 | 45 | N45_55 | 55 | N49_50 |
6 | N13_20 | 16 | N38_20 | 26 | S35_20 | 36 | S51_00 | 46 | S50_30 | 56 | N51_55 |
7 | N16_30 | 17 | N42_25 | 27 | S38_15 | 37 | N49_00 | 47 | S55_25 | 57 | N57_55 |
8 | S18_45 | 18 | N40_35 | 28 | S34_10 | 38 | N48_05 | 48 | S52_20 | 58 | S59_40 |
9 | S21_30 | 19 | N41_50 | 29 | S33_00 | 39 | N48_15 | 49 | S54_15 | 59 | N43_10 |
10 | S19_15 | 20 | N37_65 | 30 | N35_05 | 40 | N47_25 | 50 | S54_00 | 60 | N54_35 |
Num. | WRS Path and Row | Day of Year | Num. | WRS Path and Row | Day of Year |
---|---|---|---|---|---|
1 | 119034 | 2010256 | 8 | 121036 | 2010014 |
2 | 119035 | 2010256 | 9 | 122034 | 2010117 |
3 | 120034 | 2010312 | 10 | 122035 | 2010069 |
4 | 120035 | 2010123 | 11 | 122036 | 2010117 |
5 | 120036 | 2010231 | 12 | 123034 | 2010172 |
6 | 121034 | 2010254 | 13 | 123035 | 2010172 |
7 | 121035 | 2010014 | 14 | 123036 | 2010172 |
Class Types | Combinations of Class Types | Layouts of Combinations | Underdetermined Layouts | Underdetermined Proportion (‰) |
---|---|---|---|---|
2 | 3 | 45 | 0 | 0 |
3 | 7 | 3003 | 3 | 9.99 |
4 | 15 | 319,770 | 342 | 10.70 |
5 | 31 | 48,903,492 | 44,528 | 9.11 |
6 | 63 | 9,440,350,920 | 8,098,340 | 8.58 |
Year | Land Cover | Sampling Point Number of 119034 | Sampling Point Number of 122035 |
---|---|---|---|
2010 | Crop | 455 | 622 |
2010 | Forest | 417 | 228 |
2010 | Grass | 193 | 252 |
2010 | Water | 348 | 240 |
2010 | Built-up | 565 | 418 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhang, Y. An Elastic-Window-Based Method for the Underdetermined Problem in Linear Spectral Unmixing to Enhance the Spatial Resolution of the Normalized Difference Vegetation Index Time Series. Appl. Sci. 2023, 13, 12171. https://doi.org/10.3390/app132212171
Liu B, Zhang Y. An Elastic-Window-Based Method for the Underdetermined Problem in Linear Spectral Unmixing to Enhance the Spatial Resolution of the Normalized Difference Vegetation Index Time Series. Applied Sciences. 2023; 13(22):12171. https://doi.org/10.3390/app132212171
Chicago/Turabian StyleLiu, Boyu, and Yushuo Zhang. 2023. "An Elastic-Window-Based Method for the Underdetermined Problem in Linear Spectral Unmixing to Enhance the Spatial Resolution of the Normalized Difference Vegetation Index Time Series" Applied Sciences 13, no. 22: 12171. https://doi.org/10.3390/app132212171
APA StyleLiu, B., & Zhang, Y. (2023). An Elastic-Window-Based Method for the Underdetermined Problem in Linear Spectral Unmixing to Enhance the Spatial Resolution of the Normalized Difference Vegetation Index Time Series. Applied Sciences, 13(22), 12171. https://doi.org/10.3390/app132212171