Semantically Guided Enhanced Fusion for Intent Detection and Slot Filling
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Compatibility Settings
3.2. Feature Extractor
3.3. Label Attention Extractor
3.4. Dynamic Gates and Feature Fusion
3.5. Classifiers
4. Experiments
4.1. Dataset and Settings
4.2. Comparative Experiments
4.3. Ablation Study
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tur, G.; Mori, R.D. Spoken Language Understanding: Systems for Extracting Semantic Information from Speech; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-1-119-99394-0. [Google Scholar]
- Goo, C.-W.; Gao, G.; Hsu, Y.-K.; Huo, C.-L.; Chen, T.-C.; Hsu, K.-W.; Chen, Y.-N. Slot-Gated Modeling for Joint Slot Filling and Intent Prediction. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New Orleans, LA, USA, 1–6 June 2018; Association for Computational Linguistics: Kerrville, TX, USA, 2018; pp. 753–757. [Google Scholar]
- Li, C.; Li, L.; Qi, J. A Self-Attentive Model with Gate Mechanism for Spoken Language Understanding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; Association for Computational Linguistics: Kerrville, TX, USA, 2018; pp. 3824–3833. [Google Scholar]
- Qin, L.; Che, W.; Li, Y.; Wen, H.; Liu, T. A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding. arXiv 2019, arXiv:1909.02188. [Google Scholar]
- Qin, L.; Xu, X.; Che, W.; Liu, T. AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020; Association for Computational Linguistics: Kerrville, TX, USA, 2020; pp. 1807–1816. [Google Scholar]
- Liu, B.; Lane, I. Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling. arXiv 2016, arXiv:1609.01454. [Google Scholar]
- Xing, B.; Tsang, I.W. Co-Guiding Net: Achieving Mutual Guidances between Multiple Intent Detection and Slot Filling via Heterogeneous Semantics-Label Graphs. arXiv 2022, arXiv:2210.10375. [Google Scholar]
- Qin, L.; Liu, T.; Che, W.; Kang, B.; Zhao, S.; Liu, T. A Co-Interactive Transformer for Joint Slot Filling and Intent Detection. In Proceedings of the ICASSP 2021—IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021. [Google Scholar]
- He, T.; Xu, X.; Wu, Y.; Wang, H.; Chen, J. Multitask Learning with Knowledge Base for Joint Intent Detection and Slot Filling. Appl. Sci. 2021, 11, 4887. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H. A Joint Model of Intent Determination and Slot Filling for Spoken Language Understanding. IJCAI 2016, 16, 2993–2999. [Google Scholar]
- Zhao, S.; Liu, T.; Zhao, S.; Wang, F. A Neural Multi-Task Learning Framework to Jointly Model Medical Named Entity Recognition and Normalization. AAAI 2019, 33, 817–824. [Google Scholar] [CrossRef]
- Zhang, R.; dos Santos, C.N.; Yasunaga, M.; Xiang, B.; Radev, D. Neural Coreference Resolution with Deep Biaffine Attention by Joint Mention Detection and Mention Clustering. arXiv 2018, arXiv:1805.04893. [Google Scholar]
- Ni, P.; Li, Y.; Li, G.; Chang, V. Natural Language Understanding Approaches Based on Joint Task of Intent Detection and Slot Filling for IoT Voice Interaction. Neural Comput. Appl. 2020, 32, 16149–16166. [Google Scholar] [CrossRef]
- Niu, P.; Chen, Z.; Song, M. A Novel Bi-Directional Interrelated Model for Joint Intent Detection and Slot Filling. arXiv 2019, arXiv:1907.00390. [Google Scholar]
- Liu, Y.; Meng, F.; Zhang, J.; Zhou, J.; Chen, Y.; Xu, J. CM-Net: A Novel Collaborative Memory Network for Spoken Language Understanding. arXiv 2019, arXiv:1909.06937. [Google Scholar]
- Wu, D.; Ding, L.; Lu, F.; Xie, J. SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling. arXiv 2020, arXiv:2010.02693. [Google Scholar]
- Zhang, Q.; Chen, H.; Cai, Y.; Dong, W.; Liu, P. Modeling Graph Neural Networks and Dynamic Role Sorting for Argument Extraction in Documents. Appl. Sci. 2023, 13, 9257. [Google Scholar] [CrossRef]
- Qin, L.; Wei, F.; Xie, T.; Xu, X.; Che, W.; Liu, T. GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling. arXiv 2021, arXiv:2106.01925. [Google Scholar]
- Ma, Z.; Sun, B.; Li, S. A Two-Stage Selective Fusion Framework for Joint Intent Detection and Slot Filling. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xing, B.; Tsang, I.W. Group Is Better than Individual: Exploiting Label Topologies and Label Relations for Joint Multiple Intent Detection and Slot Filling. arXiv 2022, arXiv:2210.10369. [Google Scholar]
- Song, M.; Yu, B.; Quangang, L.; Yubin, W.; Liu, T.; Xu, H. Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-Occurrence. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 7–11 December 2022; pp. 7967–7977. [Google Scholar]
- Abro, W.A.; Qi, G.; Aamir, M.; Ali, Z. Joint Intent Detection and Slot Filling Using Weighted Finite State Transducer and BERT. Appl. Intell. 2022, 52, 17356–17370. [Google Scholar] [CrossRef]
- Hao, X.; Wang, L.; Zhu, H.; Guo, X. Joint Agricultural Intent Detection and Slot Filling Based on Enhanced Heterogeneous Attention Mechanism. Comput. Electron. Agric. 2023, 207, 107756. [Google Scholar] [CrossRef]
- Dao, M.H.; Truong, T.H.; Nguyen, D.Q. From Disfluency Detection to Intent Detection and Slot Filling. In Proceedings of the Interspeech 2022, Incheon, Republic of Korea, 18–22 September 2022; pp. 1106–1110. [Google Scholar]
- Tavares, D.; Azevedo, P.; Semedo, D.; Sousa, R.; Magalhães, J. Task Conditioned BERT for Joint Intent Detection and Slot-Filling. arXiv 2023, arXiv:2308.06165. [Google Scholar]
- Castellucci, G.; Bellomaria, V.; Favalli, A.; Romagnoli, R. Multi-Lingual Intent Detection and Slot Filling in a Joint BERT-Based Model. arXiv 2019, arXiv:1907.02884. [Google Scholar]
- Stoica, A.; Kadar, T.; Lemnaru, C.; Potolea, R.; Dînşoreanu, M. Intent Detection and Slot Filling with Capsule Net Architectures for a Romanian Home Assistant. Sensors 2021, 21, 1230. [Google Scholar] [CrossRef]
- Akbari, M.; Karimi, A.H.; Saeedi, T.; Saeidi, Z.; Ghezelbash, K.; Shamsezat, F.; Akbari, M.; Mohades, A. A Persian Benchmark for Joint Intent Detection and Slot Filling. arXiv 2023, arXiv:2303.00408. [Google Scholar]
- Firdaus, M.; Ekbal, A.; Cambria, E. Multitask Learning for Multilingual Intent Detection and Slot Filling in Dialogue Systems. Inf. Fusion 2023, 91, 299–315. [Google Scholar] [CrossRef]
- Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–19 October 2014; Association for Computational Linguistics: Kerrville, TX, USA, 2014; pp. 1532–1543. [Google Scholar]
- Cui, L.; Zhang, Y. Hierarchically-Refined Label Attention Network for Sequence Labeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 4113–4126. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2019, arXiv:1810.04805. [Google Scholar]
- Choi, H.; Kim, J.; Joe, S.; Gwon, Y. Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10 January 2021; pp. 5482–5487. [Google Scholar]
- Coucke, A.; Saade, A.; Ball, A.; Bluche, T.; Caulier, A.; Leroy, D.; Doumouro, C.; Gisselbrecht, T.; Caltagirone, F.; Lavril, T.; et al. Snips Voice Platform: An Embedded Spoken Language Understanding System for Private-by-Design Voice Interfaces. arXiv 2018, arXiv:1805.10190. [Google Scholar]
Model | ATIS | SNIPS | ||||
---|---|---|---|---|---|---|
Slot (F1) | Intent (Acc) | Overall (Acc) | Slot (F1) | Intent (Acc) | Overall (Acc) | |
Slot-Gated * [2] | 88.72 | 95.22 | 74.80 | 94.20 | 93.66 | 82.90 |
SF-ID Network * [14] | 90.55 | 96.15 | 78.84 | 94.72 | 96.58 | 86.24 |
CM-Net * [15] | 93.40 | 96.75 | 84.53 | 95.14 | 96.24 | 85.47 |
Stack-Propagation * [4] | 94.25 | 97.05 | 86.95 | 95.44 | 97.15 | 86.65 |
Co-Interactive Transformer * [8] | 95.65 | 96.81 | 86.45 | 95.20 | 98.11 | 88.92 |
SG framework * | 96.55 | 97.54 | 88.20 | 95.60 | 98.43 | 89.30 |
Model | ATIS | SNIPS | ||||
---|---|---|---|---|---|---|
Slot (F1) | Intent (Acc) | Overall (Acc) | Slot (F1) | Intent (Acc) | Overall (Acc) | |
Model 1 | 96.14 | 96.88 | 87.25 | 95.33 | 97.95 | 88.75 |
Model 2 | 95.87 | 96.35 | 87.03 | 95.12 | 97.50 | 88.62 |
Model 3 | 94.85 | 95.56 | 86.32 | 94.35 | 97.02 | 88.21 |
SG framework | 96.55 | 97.54 | 88.20 | 95.60 | 98.43 | 89.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, S.; Ma, Q.; Hou, Y.; Zeng, G. Semantically Guided Enhanced Fusion for Intent Detection and Slot Filling. Appl. Sci. 2023, 13, 12202. https://doi.org/10.3390/app132212202
Cai S, Ma Q, Hou Y, Zeng G. Semantically Guided Enhanced Fusion for Intent Detection and Slot Filling. Applied Sciences. 2023; 13(22):12202. https://doi.org/10.3390/app132212202
Chicago/Turabian StyleCai, Songtao, Qicheng Ma, Yupeng Hou, and Guangping Zeng. 2023. "Semantically Guided Enhanced Fusion for Intent Detection and Slot Filling" Applied Sciences 13, no. 22: 12202. https://doi.org/10.3390/app132212202
APA StyleCai, S., Ma, Q., Hou, Y., & Zeng, G. (2023). Semantically Guided Enhanced Fusion for Intent Detection and Slot Filling. Applied Sciences, 13(22), 12202. https://doi.org/10.3390/app132212202