A Stable Sound Field Control Method for a Personal Audio System
Abstract
:1. Introduction
2. Three Traditional Sound Field Control Methods
2.1. ACC Method [2]
2.2. PM Method [3]
2.3. EDPM Method [8]
2.4. Comparison of Three Traditional Methods
3. Proposed Method
3.1. Sound Field Control Method Optimization Model
3.2. The Selection of Parameters and
3.3. Quality of Sound Field Control
3.4. The Selection of Parameter
4. Simulation Experiment
4.1. Experiment Settings
4.2. Experiment Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Wu, M.; Lu, H. A review of sound field control. Appl. Sci. 2022, 12, 7319. [Google Scholar] [CrossRef]
- Choi, J.-W.; Kim, Y.-H. Generation of an acoustically bright zone with an illuminated region using multiple sources. J. Acoust. Soc. Am. 2002, 111, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Poletti, M. An investigation of 2D multizone surround sound systems. In Proceedings of the 125th AES Convention, San Francisco, CA, USA, 2–5 October 2008. [Google Scholar]
- Coleman, P.; Jackson, P.J.B.; Olik, M.; Pedersen, J.A. Personal audio with a planar bright zone. J. Acoust. Soc. Am. 2014, 136, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Lee, S.Q.; Fazi, F.M.; Nelson, P.A.; Kim, D.; Wang, S.; Park, K.H.; Seo, J. Maximization of acoustic energy difference between two spaces. J. Acoust. Soc. Am. 2010, 128, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-H.; Jacobsen, F. Sound field control with a circular double-layer array of loudspeakers. J. Acoust. Soc. Am. 2012, 131, 4518–4525. [Google Scholar] [CrossRef]
- Olivieri, F.; Fazi, F.M.; Shin, M.; Nelson, P. Pressure-matching beamforming method for loudspeaker arrays with frequency dependent selection of control points. In Proceedings of the 138th AES Convention, Warsaw, Poland, 7–10 May 2015. [Google Scholar]
- Afghah, T.; Patros, E.; Puckette, M. A pseudoinverse technique for the pressure-matching beamforming method. In Proceedings of the 145th AES Convention, New York, NY, USA, 17–20 October 2018. [Google Scholar]
- Elliott, S.J.; Cheer, J.; Choi, J.-W.; Kim, Y. Robustness and regularization of personal audio systems. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 2123–2133. [Google Scholar] [CrossRef]
- Zhu, Q.; Coleman, P.; Wu, M.; Yang, J. Robust acoustic contrast control with reduced in-situ measurement by acoustic modeling. J. Audio Eng. Soc. 2017, 65, 460–473. [Google Scholar] [CrossRef]
- Han, Z.; Wu, M.; Zhu, Q.; Yang, J. Three-dimensional wave-domain acoustic contrast control using a circular loudspeaker array. J. Acoust. Soc. Am. 2019, 145, EL488–EL493. [Google Scholar] [CrossRef]
- Hu, M.; Lu, J. Theoretical explanation of uneven frequency response of time-domain acoustic contrast control method. J. Acoust. Soc. Am. 2021, 149, 4292–4297. [Google Scholar] [CrossRef]
- Lee, T.; Nielsen, J.K.; Christensen, M.G. Towards perceptually optimized sound zones: A proof-of-concept study. In Proceedings of the 2019 ICASSP, Brighton, UK, 12–17 May 2019; pp. 136–140. [Google Scholar]
- Lee, T.; Nielsen, J.K.; Christensen, M.G. Signal-adaptive and perceptually optimized sound zones with variable span trade-off filters. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 2412–2426. [Google Scholar] [CrossRef]
- Lee, T.; Shi, L.; Nielsen, J.K.; Christensen, M.G. Fast generation of sound zones using variable span trade-off filters in the dft-domain. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 363–378. [Google Scholar] [CrossRef]
- Ryu, H.; Wang, S.; Kim, S.M. Development of a personal audio performance controller with efficient, fine, and linear tunable functions. IEEE Access 2020, 8, 123916–123928. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Zhang, W.; Zhang, L. Time-domain sound field reproduction with pressure and particle velocity jointly controlled. Appl. Sci. 2021, 11, 10880. [Google Scholar] [CrossRef]
- Du, B.; Zeng, X.; Wang, H. A two-zone sound field reproduction based on the region energy control. In Proceedings of the Inter Noise 2021, Washington, DC, USA, 1–5 August 2021; pp. 348–354. [Google Scholar]
- Du, B.; Zeng, X.; Vorländer, M. Multizone sound field reproduction based on equivalent source method. Acoust. Aust. 2021, 49, 317–329. [Google Scholar] [CrossRef]
- Zhu, M.; Zhao, S. An iterative approach to optimize loudspeaker placement for multi-zone sound field reproduction. J. Acoust. Soc. Am. 2021, 149, 3462–3468. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.M.; Steven, G.P. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar] [CrossRef]
- Zhao, S.; Burnett, I.S. Evolutionary array optimization for multizone sound field reproduction. J. Acoust. Soc. Am. 2022, 151, 2791–2801. [Google Scholar] [CrossRef]
- Zhong, J.; Zhuang, T.; Kirby, R.; Karimi, M.; Zou, H.; Qiu, X. Quiet zone generation in an acoustic free field using multiple parametric array loudspeakers. J. Acoust. Soc. Am. 2022, 151, 1235–1245. [Google Scholar] [CrossRef]
- Abe, T.; Koyama, S.; Ueno, N.; Saruwatari, H. Amplitude matching for multizone sound field control. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 31, 656–669. [Google Scholar] [CrossRef]
- Elliott, S.J.; Jones, M. An active headrest for personal audio. J. Acoust. Soc. Am. 2006, 119, 2702–2709. [Google Scholar] [CrossRef]
- Cheer, J.; Elliott, S.J.; Kim, Y. Practical implementation of personal audio in a mobile device. J. Audio Eng. Soc. 2013, 61, 290–300. [Google Scholar]
- Cheer, J.; Elliott, S.J.; Gálvez, M.F.S. Design and implementation of a car cabin personal audio system. J. Audio Eng. Soc. 2013, 61, 412–424. [Google Scholar]
- Liao, X.; Cheer, J.; Elliott, S.J.; Zheng, S. Design of a loudspeaker array for personal audio in a car cabin. J. Audio Eng. Soc. 2017, 65, 226–238. [Google Scholar] [CrossRef]
- Choi, J.W. Real-Time demonstration of personal audio and 3D audio rendering using line array systems. In Proceedings of the MMM 2020, Daejeon, Republic of Korea, 5–8 January 2020. [Google Scholar]
- Pierce, A.D. Acoustics, an Introduction to Its Physical Principles and Applications; Acoustical Society of America: New York, NY, USA, 1989. [Google Scholar]
- Shin, M.; Nelson, P.A.; Fazi, F.M.; Seo, J. Velocity controlled sound field reproduction by non-uniformly spaced loudspeakers. J. Sound Vib. 2016, 370, 444–464. [Google Scholar] [CrossRef]
- Olivieri, F.; Fazi, F.M.; Nelson, P.A.; Fontana, S. Comparison of strategies for accurate reproduction of a target signal with compact arrays of loudspeakers for the generation of zones of private sound and silence. J. Audio Eng. Soc. 2016, 64, 905–917. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX, Version 1.21 MATLAB Toolbox for Disciplined Convex Programming. Available online: http://cvxr.com/cvx (accessed on 5 November 2023).
- Bai, M.R.; Chen, C.C. Application of convex optimization to acoustical array signal processing. J. Sound Vib 2013, 332, 6596–6616. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S.; Ye, Y. Disciplined convex programming. In Global Optimization: From Theory to Implementation, Nonconvex Optimization and Applications; Liberti, L., Maculan, N., Eds.; Springer: New York, NY, USA, 2006; pp. 155–210. [Google Scholar]
Name | Polar Radius (m) | Azimuthal Angle (Radian) |
---|---|---|
ld 1 | 2 | 0 |
ld 2 | 2 | |
ld 3 | 2 | |
ld 4 | 2 | |
ld 5 | 2 | |
Original sound source | 2.4 | |
Original point O | 0 | 0 |
Center of the dark zone | 0.3 | |
Center of the bright zone | 0.3 | 0 |
Method | Average Acoustic Contrast (dB) |
---|---|
ACC | 18.3381 |
PM method in the bright zone | −0.5581 |
EDPM method in the bright zone | 0.8955 |
Ours | 1.7317 |
Method | Average Reconstruction Error (dB) |
---|---|
ACC | 4.3408 |
PM method in the bright zone | −17.8140 |
EDPM method in the bright zone | −9.0047 |
Ours | −5.7584 |
Method | Average Array Effort (dB) |
---|---|
ACC | 0 |
PM method in the bright zone | −1.4078 |
EDPM method in the bright zone | −4.6614 |
Ours | −9.4790 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, C. A Stable Sound Field Control Method for a Personal Audio System. Appl. Sci. 2023, 13, 12209. https://doi.org/10.3390/app132212209
Wang S, Zhang C. A Stable Sound Field Control Method for a Personal Audio System. Applied Sciences. 2023; 13(22):12209. https://doi.org/10.3390/app132212209
Chicago/Turabian StyleWang, Song, and Cong Zhang. 2023. "A Stable Sound Field Control Method for a Personal Audio System" Applied Sciences 13, no. 22: 12209. https://doi.org/10.3390/app132212209
APA StyleWang, S., & Zhang, C. (2023). A Stable Sound Field Control Method for a Personal Audio System. Applied Sciences, 13(22), 12209. https://doi.org/10.3390/app132212209