Smartphone-Based Video Analysis for Guiding Shoulder Therapeutic Exercises: Concurrent Validity for Movement Quality Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Instruments
2.3.1. Sample Selection and Characterization
2.3.2. Kinematic Data
2.4. Procedures
2.4.1. Sample Selection and Characterization
2.4.2. Data Acquisition
2.4.3. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Characterisation
3.2. Concurrent Validity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Larkin-Kaiser, K.A.; Parr, J.J.; Borsa, P.A.; George, S.Z. Range of motion as a predictor of clinical shoulder pain during recovery from delayed-onset muscle soreness. J. Athl. Train. 2015, 50, 289–294. [Google Scholar] [CrossRef]
- Gordon, C.M.; Andrasik, F.; Schleip, R.; Birbaumer, N.; Rea, M. Myofascial triggerpoint release (MTR) for treating chronic shoulder pain: A novel approach. J. Bodyw. Mov. Ther. 2016, 20, 614–622. [Google Scholar] [CrossRef]
- Worsley, P.; Warner, M.; Mottram, S.; Gadola, S.; Veeger, H.E.; Hermens, H.; Morrissey, D.; Little, P.; Cooper, C.; Carr, A.; et al. Motor control retraining exercises for shoulder impingement: Effects on function, muscle activation, and biomechanics in young adults. J. Shoulder Elb. Surg. 2013, 22, 11–19. [Google Scholar] [CrossRef]
- Burns, D.; Razmjou, H.; Shaw, J.; Richards, R.; McLachlin, S.; Hardisty, M.; Henry, P.; Whyne, C. Adherence Tracking with Smart Watches for Shoulder Physiotherapy in Rotator Cuff Pathology: Protocol for a Longitudinal Cohort Study. JMIR Res. Protoc. 2020, 9, e17841. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.C. Rehabilitation after shoulder instability surgery. Curr. Orthop. 2004, 18, 197–209. [Google Scholar] [CrossRef]
- van der Meijden, O.A.; Westgard, P.; Chandler, Z.; Gaskill, T.R.; Kokmeyer, D.; Millett, P.J. Rehabilitation after arthroscopic rotator cuff repair: Current concepts review and evidence-based guidelines. Int. J. Sports Phys. Ther. 2012, 7, 197–218. [Google Scholar]
- Holden, M.A.; Haywood, K.L.; Potia, T.A.; Gee, M.; McLean, S. Recommendations for exercise adherence measures in musculoskeletal settings: A systematic review and consensus meeting (protocol). Syst. Rev. 2014, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Peek, K.; Sanson-Fisher, R.; Mackenzie, L.; Carey, M. Interventions to aid patient adherence to physiotherapist prescribed self-management strategies: A systematic review. Physiotherapy 2016, 102, 127–135. [Google Scholar] [CrossRef]
- Chen, Y.; Abel, K.T.; Janecek, J.T.; Chen, Y.; Zheng, K.; Cramer, S.C. Home-Based Technologies for Stroke Rehabilitation—A Systematic Review. Int. J. Med. Inf. 2019, 123, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.F.M.; Chia, P.F.; Fong, K.N.K. Effectiveness of home-based upper limb rehabilitation in stroke survivors: A systematic review and meta-analysis. Front. Neurol. 2022, 13, 964196. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, H.; Janakiraman, B.; Gelaw, A.Y.; Fisseha, B.; Sundaram, S.; Sharma, H.R. Effect of scapular stabilization exercise program in patients with subacromial impingement syndrome: A systematic review. J. Exerc. Rehabil. 2020, 16, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Shire, A.R.; Stæhr, T.A.B.; Overby, J.B.; Bastholm Dahl, M.; Sandell Jacobsen, J.; Høyrup Christiansen, D. Specific or general exercise strategy for subacromial impingement syndrome-does it matter? A systematic literature review and meta-analysis. BMC Musculoskelet. Disord. 2017, 18, 158. [Google Scholar] [CrossRef]
- Chen, Y.P.; Lin, C.Y.; Tsai, M.J.; Chuang, T.Y.; Lee, O.K.S. Wearable Motion Sensor Device to Facilitate Rehabilitation in Patients with Shoulder Adhesive Capsulitis: Pilot Study to Assess Feasibility. J. Med. Internet Res. 2020, 22, e17032. [Google Scholar] [CrossRef]
- Orange, S.T.; Metcalfe, J.W.; Liefeith, A.; Jordan, A.R. Validity of various portable devices to measure sit-to-stand velocity and power in older adults. Gait Posture 2020, 76, 409–414. [Google Scholar] [CrossRef]
- Akbaş, E.; Güneri, S.; Taş, S.; Erdem, E.U.; Yüksel, I. The effects of additional proprioceptive neuromuscular facilitation over conventional therapy in patients with adhesive capsulitis. Turk. J. Physiother. Rehabil. 2015, 26, 78–85. [Google Scholar] [CrossRef]
- Mulligan, E.P.; Huang, M.; Dickson, T.; Khazzam, M. The effect of axioscapular and rotator cuff exercise training sequence in patients with subacromial impingement syndrome: A randomized crossover trial. Int. J. Sports Phys. Ther. 2016, 11, 94–107. [Google Scholar]
- Popovici, M.; Ursoniu, S.; Feier, H.; Mocan, M.; Tomulescu, O.M.G.; Kundnani, N.R.; Valcovici, M.; Dragan, S.R. Benefits of Using Smartphones and Other Digital Methods in Achieving Better Cardiac Rehabilitation Goals: A Systematic Review and Meta-Analysis. Med. Sci. Monit. 2023, 29, e939132-1. [Google Scholar] [CrossRef]
- Michelini, A.; Eshraghi, A.; Andrysek, J. Two-dimensional video gait analysis: A systematic review of reliability, validity, and best practice considerations. Prosthet. Orthot. Int. 2020, 44, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Maree, J. The psychosocial development theory of Erik Erikson: Critical overview. Early Child. Dev. Care 2021, 191, 1107–1121. [Google Scholar] [CrossRef]
- COMED. Available online: https://www.comed.fr/fr/produits/117-Metre-ruban (accessed on 31 July 2023).
- Direção-Geral da Saúde. Avaliação Antropométrica No Adulto; Orientação no 017/2013; Ministério da Saúde: Lisboa, Portugal, 2013. [Google Scholar]
- Craig, C.; Alison, M.; Strom, M.; Bauman, A.; Booth, M.; Ainsworth, B.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.; et al. International Physical Activity Questionnaire: 12- Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Qualisys AB. Qualisys Track Manager: User Manual; Qualisys Track Manager: Göteborg, Sweden, 2018. [Google Scholar]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.; Yong, M.G.; Lee, J.; et al. Mediapipe: A framework for building perception pipelines. arXiv 2019, arXiv:1906.08172. [Google Scholar]
- Lintsi, M.; Kaarma, H.; Kull, I. Comparison of hand-to-hand bioimpedance and anthropometry equations versus dual-energy X-ray absorptiometry for the assessment of body fat percentage in 17–18-year-old conscripts. Clin. Physiol. Funct. Imaging 2004, 24, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and Orientation in-Space of Bones during Movement—Anatomical Frame Definition and Determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Leardini, A.; Biagi, F.; Merlo, A.; Belvedere, C.; Benedetti, M. Multi-segment trunk kinematics during locomotion and elementary exercises. Clin. Biomech. 2011, 26, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Leardini, A.; Sawacha, Z.; Paolini, G.; Ingrosso, S.; Nativo, R.; Benedetti, M. A new anatomically based protocol for gait analysis in children. Gait Posture 2007, 26, 560–571. [Google Scholar] [CrossRef] [PubMed]
- C-Motion. Marker Set Guidelines—Visual3D Wiki Documentation. 2017. Available online: https://www.c-motion.com/v3dwiki/index.php/Marker_Set_Guidelines (accessed on 21 October 2023).
- Petuskey, K.; Bagley, A.; Abdala, E.; James, M.A.; Rab, G. Upper extremity kinematics during functional activities: Three-dimensional studies in a normal pediatric population. Gait Posture 2007, 25, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Park, D.J. Comparison of muscular activities between subjects with and without scapular downward rotation impairment during diagonal pattern of exercises. J. Bodyw. Mov. Ther. 2017, 23, 59–64. [Google Scholar] [CrossRef]
- Melo, A.S.C.; Vilas-Boas, J.P.; Cruz, E.B.; Macedo, R.M.; Ferreira, S.B.; Sousa, A.S. The influence of shoulder position during multi-joint exercises in the relative scapular muscles activity in symptomatic and asymptomatic conditions. J. Back Musculoskelet. Rehabil. 2023, 36, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Corporation. Microsoft Excel. 2018. Available online: https://office.microsoft.com/excel (accessed on 21 October 2023).
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 8, 307–310. [Google Scholar] [CrossRef]
- Moreira, R.; Lial, L.; Teles Monteiro, M.G.; Aragão, A.; Santos David, L.; Coertjens, M.; Silva-Júnior, F.L.; Dias, G.; Velasques, B.; Ribeiro, P.; et al. Diagonal Movement of the Upper Limb Produces Greater Adaptive Plasticity than Sagittal Plane Flexion in the Shoulder. Neurosci. Lett. 2017, 643, 8–15. [Google Scholar] [CrossRef]
- Kim, H.A.; Kwon, O.Y.; Yi, C.H.; Jeon, H.S.; Choi, W.J.; Weon, J.H. Altered Muscle Recruitment Patterns during Isometric Shoulder Abduction in Individuals with Chronic Upper Trapezius Pain: A Cross Sectional Study. BMC Musculoskelet. Disord. 2022, 23, 1131. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, P.N.; Haeberle, H.S.; Navarro, S.M.; Sultan, A.A.; Mont, M.A.; Ricchetti, E.T.; Schickendantz, M.S.; Iannotti, J.P. Mobile technology and telemedicine for shoulder range of motion: Validation of a motion-based machine-learning software development kit. J. Shoulder. Elbow Surg. 2018, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Hensley, C.; Kontos, D.; Feldman, C.; Wafford, Q.; Wright, A.; Chang, A. Reliability and validity of 2-dimensional video analysis for a running task: A systematic review. Phys. Ther. Sport 2022, 58, 16–33. [Google Scholar] [CrossRef]
- Lu, Z.; Nazari, G.; MacDermid, J.C.; Modarresi, S.; Killip, S. Measurement Properties of a 2-Dimensional Movement Analysis System: A Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2020, 101, 1603–1627. [Google Scholar] [CrossRef] [PubMed]
Anterior View | ||
---|---|---|
Marker Name | Description | |
L/RALH | Left/Right anterior head | |
L/RCAJ | Left/Right acromion | |
SJN | Deepest point of incisura jugularis | |
SXS | Xiphoid process, the most caudal point of the sternum | |
L/RIAS | Left/Right anterior superior iliac spine | |
L/RFTC | Most lateral prominence of the greater trochanter | |
L/RRAD | Left/Right distal radius | |
L/RULN | Left/Right distal ulna |
Posterior View | ||
---|---|---|
Marker Name | Description | |
L/RPLH | Left/Right posterior head | |
CV7 | Spinous process of the seventh cervical vertebrae | |
TV2 | Second thoracic vertebrae | |
TV7 | Midpoint between the inferior angles of the most caudal points of the two scapulae | |
LV1 | First lumbar vertebrae | |
LV3 | Third lumbar vertebrae | |
LV5 | Fifth lumbar vertebrae | |
L/RIPS | Left/Right posterior superior iliac spine | |
L/RLELB | Left/Right lateral elbow | |
L/RMELB | Left/Right medial elbow | |
L/RLH | Left/Right dorsal 2nd metacarpal head | |
L/RMH | Left/Right dorsal 5th metacarpal head |
Exercise | Initial Position | Final Position | Description |
---|---|---|---|
Diagonal Shoulder Exercise (D1) | The participant is standing, looking forwards with trunk and pelvis in a neutral position. The hand of the right upper limb should be at the level of the hip of the opposite lower limb and rotated inwards. The participant was asked to elevate the upper limb, both in the sagittal and frontal planes, and simultaneously rotate the right hand outwards. In the end, the patient should return to the starting position. | ||
Multi-joint Exercise, Including Shoulder External Rotation at 90° of Shoulder Abduction (M90) | The participant is seated with knees bent at 90° flexion and feet on the floor, looking straight ahead and with the trunk and pelvis in a neutral position. The right elbow should be at 90° flexion, and the hand should be pointing forwards. The participant was asked to rotate the trunk to the right side and simultaneously rotate the right hand, producing the maximum shoulder external rotation. For 3 s, the participant was asked to bring the scapulas together, avoiding tilting the trunk. In the end, the patient should return to the starting position. |
Median (P25; P75) | Valor p | |
---|---|---|
Age (years) | 25.00 (23; 27) | 0.001 |
IMC (kg/m2) | 23.14 (22.04; 27.34) | 0.004 |
Gender | Women | 60% |
Men | 40% | |
Physical Activity Level | Low | 20% |
Moderate | 26.7% | |
High | 53.3% | |
“Last Time You Had Shoulder Pain” | Never | 66.6% |
More than 6 months ago | 26.7% | |
Less than 6 months ago | 6.7% |
Segments | Bias | SD of Bias | LoA | |||
---|---|---|---|---|---|---|
D1 | M90 | D1 | M90 | D1 | M90 | |
Head | 30.88 | 28.95 | 20.67 | 39.74 | [−9.63; 71.40] | [−48.94; 106.8] |
Trunk | 22.20 | 6.22 | 14.80 | 6.37 | [−6.80; 51.21] | [−6.27; 18.71] |
Shoulder | 3.51 | −20.46 | 3.62 | 31.23 | [−3.58; 10.62] | [−81.67; 40.74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, M.; Melo, A.S.C.; Cunha, B.; Sousa, A.S.P. Smartphone-Based Video Analysis for Guiding Shoulder Therapeutic Exercises: Concurrent Validity for Movement Quality Control. Appl. Sci. 2023, 13, 12282. https://doi.org/10.3390/app132212282
Lopes M, Melo ASC, Cunha B, Sousa ASP. Smartphone-Based Video Analysis for Guiding Shoulder Therapeutic Exercises: Concurrent Validity for Movement Quality Control. Applied Sciences. 2023; 13(22):12282. https://doi.org/10.3390/app132212282
Chicago/Turabian StyleLopes, Maria, Ana S. C. Melo, Bruno Cunha, and Andreia S. P. Sousa. 2023. "Smartphone-Based Video Analysis for Guiding Shoulder Therapeutic Exercises: Concurrent Validity for Movement Quality Control" Applied Sciences 13, no. 22: 12282. https://doi.org/10.3390/app132212282
APA StyleLopes, M., Melo, A. S. C., Cunha, B., & Sousa, A. S. P. (2023). Smartphone-Based Video Analysis for Guiding Shoulder Therapeutic Exercises: Concurrent Validity for Movement Quality Control. Applied Sciences, 13(22), 12282. https://doi.org/10.3390/app132212282