Design of an Energy Harvester Based on a Rubber Bearing Floating Slab Track
Abstract
:1. Introduction
2. Energy Harvesting Position of Rubber Bearing Floating Slab Track
3. Proposal of the Spherical Energy Harvester
4. Performance Comparison of Energy Harvesters
4.1. Numerical Model
4.2. Mechanical and Electrical Performance
4.3. Load Match
5. Parameter Optimization Design
5.1. Parameter Analysis
5.2. Piezoelectric Layer Thickness
5.3. Piezoelectric Layer Radius
5.4. Axial Ratio of Spherical Shell
5.5. Spherical Shell Thickness
6. Conclusions
- (1)
- Compared with the disk and cymbal energy harvester, the spherical energy harvester had better electrical and mechanical properties and showed less stress concentration. The output voltage of the spherical energy harvester was 11 times that of the disk one, and the total electricity output was 20% more than that of the cymbal energy harvester.
- (2)
- By calculating the output power of the energy harvesters under load match, we found that the output power of the spherical energy harvester was two orders of magnitude higher than that of the disk one and 53% higher than that of the cymbal one, being able to reach the microwatt level under impedance match.
- (3)
- The optimal dimensions of the spherical energy harvester were piezoelectric layer thickness h = 2 mm, piezoelectric layer radius r = 16 mm, spherical shell axis ratio I = 0.4, and spherical shell thickness t = 4 mm.
- (4)
- The spherical energy harvesters had better mechanical and electrical properties than the traditional energy harvesting structure, so it has broad prospects in the field of energy harvesting of rail transit and other energy harvesting fields.
- (5)
- This paper creatively proposed a new spherical energy harvesting structure and applied it to energy harvesting in the field of rail transit. In the future, it can also be applied to the field of energy harvesting under long-term heavy load such as road surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
the thickness of force transmission structures | |
D | the thickness of the disk piezoelectric layer |
the diameter of the disk energy harvester | |
the thickness of the metal cap | |
the thickness of the cymbal piezoelectric layer | |
the inner cavity bottom diameter | |
the inner cavity top diameter | |
the height of the inner cavity | |
the diameter of cymbal energy harvester | |
piezoelectric strain constant | |
the piezoelectric stress constant | |
and | relative dielectric constants |
relative dielectric constant | |
, , , , , , | the elastic coefficients |
density | |
H | piezoelectric layer thickness |
R | piezoelectric layer radius |
r1 | vertical axis radius of the inner cavity of the spherical shell |
r2 | horizontal axis radius of the inner cavity of the spherical shell |
I | axis ratio |
T | spherical shell thickness |
R0 | equivalent internal resistor of the energy harvester |
C0 | equivalent capacitance |
RL | load resistor |
vacuum dielectric constant | |
piezoelectric layer area | |
capacitive impedance | |
external load resistance | |
matching impedance | |
V | voltage source |
References
- Xu, L.; Ma, M. Dynamic response of the multilayered half-space medium due to the spatially periodic harmonic moving load. Soil Dyn. Earthq. Eng. 2022, 157, 107246. [Google Scholar] [CrossRef]
- Jin, H.; Tang, S.; Zhao, C.; Jiang, B. Study on vibration propagation characteristics caused by segments joints in shield tunnel. Int. J. Struct. Stab. Dyn. 2023, 23, 2350156. [Google Scholar] [CrossRef]
- Li, J.; Jang, S.; Tang, J. Implementation of a piezoelectric energy harvester in railway health monitoring. Proc. SPIE 2014, 9061, 90612Q. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Pan, H.; Salman, W.; Yuan, Y.; Liu, Y. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads. Energy Convers. Manag. 2016, 118, 287–294. [Google Scholar] [CrossRef]
- Yuan, T.; Yang, J.; Song, R.; Liu, X. Vibration energy harvesting system for railroad safety based on running vehicles. Smart Mater. Struct. 2014, 23, 125046. [Google Scholar] [CrossRef]
- Wang, J.; Penamalli, G.; Zuo, L. Electromagnetic energy harvesting from train induced railway track vibrations. In Proceedings of the 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Suzhou, China, 8–10 July 2012; pp. 29–34. [Google Scholar] [CrossRef]
- Lin, T.; Pan, Y.; Chen, S.; Zuo, L. Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting. Appl. Energ. 2018, 213, 219–226. [Google Scholar] [CrossRef]
- Hou, W.; Zheng, Y.; Guo, W.; Guo, P. Piezoelectric vibration energy harvesting for rail transit bridge with steel-spring floating slab track system. J. Clean. Prod. 2021, 291, 125283. [Google Scholar] [CrossRef]
- Mohamed, M.; Wu, W.; Moniri, M. Power harvesting for smart sensor networks in monitoring water distribution system. In Proceedings of the 2011 International Conference on Networking, Sensing and Control, Delft, The Netherlands, 11–13 April 2011; pp. 393–398. [Google Scholar] [CrossRef]
- Lee, B.; Lin, S.; Wu, W.; Wang, X.; Chang, P.; Lee, C. Piezoelectric mems generators fabricated with an aerosol deposition pzt thin film. J. Micromech. Microeng. 2009, 19, 065014. [Google Scholar] [CrossRef]
- Fang, H.; Liu, J.; Xu, Z.; Dong, L.; Wang, L.; Chen, D.; Cai, B.; Liu, Y. Fabrication and performance of mems-based piezoelectric power generator for vibration energy harvesting. Microelectron. J. 2006, 37, 1280–1284. [Google Scholar] [CrossRef]
- Shen, D.; Park, J.; Ajitsaria, J.; Choe, S.; Wikle, H.; Kim, D. The design, fabrication and evaluation of a mems pzt cantilever with an integrated si proof mass for vibration energy harvesting. J. Micromech. Microeng. 2008, 18, 055017. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Hwang, S.; Su, Y.; Kim, S.; Cheng, H.; Gur, O.; Haney, R.; Omenetto, F.; Huang, Y.; Rogers, J. Transient, biocompatible electronics and energy harvesters based on zno. Small 2013, 9, 3398–3404. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Park, H.; Heo, J.; Priya, S. Structure-performance relationships for cantilever-type piezoelectric energy harvesters. J. Appl. Phys. 2014, 115, 204108. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Q.; Yao, M.; Dong, W.; Gao, S. Vibration piezoelectric energy harvester with multi-beam. AIP Adv. 2015, 5, 041332. [Google Scholar] [CrossRef]
- Sahi, Y.; Chandan, S. Finite element analysis of lead-free ceramic based cymbal transducer for energy harvesting. Integr. Ferroelectr. 2020, 212, 81–88. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, M.; Yu, W.; Zhang, L. On energy harvesting characteristics of cymbal transducer. Appl. Mech. Mater. 2013, 365–366, 1318–1323. [Google Scholar] [CrossRef]
- Palosaari, J.; Leinonen, M.; Hannu, J.; Juuti, J.; Jantunen, H. Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression. J. Electroceramics 2012, 28, 214–219. [Google Scholar] [CrossRef]
- Kamata, Y.; Yoon, D.; Sasaki, T.; Nozaki, Y.; Yamaura, S.; Sekiguchi, T.; Nakajima, T.; Shoji, S. Stacked piezoelectric energy harvesting device by printing process. Micro Nano Lett. 2016, 11, 650–653. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Li, Q.; Wang, X.; Gao, Z.; Zhang, L. Fabrication and performance of a power generation device based on stacked piezoelectric energy-harvesting units for pavements. Energy Convers. Manag. 2018, 163, 196–207. [Google Scholar] [CrossRef]
- Zhao, H.; Qin, L.; Ling, J. Test and analysis of bridge transducers for harvesting energy from asphalt pavement. Int. J. Transp. Sci. Technol. 2015, 4, 17–28. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, H.; Dong, Z.; Sun, Y.; Gao, Y. Laboratory testing of piezoelectric bridge transducers for asphalt pavement energy harvesting. Key Eng. Mater. 2011, 492, 172–175. [Google Scholar] [CrossRef]
- Wang, F.; Wu, W.; Lozowski, A.; Alizadehyazdi, V.; Amin, A. Energy harvesting with a piezoelectric thunder. In Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015. [Google Scholar]
- Wang, F.; Wang, Z.; Soroush, M.; Abedini, A. Energy harvesting efficiency optimization via varying the radius of curvature of a piezoelectric thunder. Smart Mater. Struct. 2016, 25, 095044. [Google Scholar] [CrossRef]
- Wise, S. Displacement properties of rainbow and thunder piezoelectric actuators. Sens. Actuators A Phys. 1998, 69, 33–38. [Google Scholar] [CrossRef]
- Peddigari, M.; Kim, G.; Park, C.; Min, Y.; Kim, J.; Ahn, C.; Choi, J.; Hahn, B.; Choi, J.; Park, D.; et al. A comparison study of fatigue behavior of hard and soft piezoelectric single crystal macro-fiber composites for vibration energy harvesting. Sensors 2019, 19, 2196. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhou, K.; Zhang, X.; Zhang, D. Development, modeling and application of piezoelectric fiber composites. Trans. Nonferrous Met. Soc. China 2013, 23, 98–107. [Google Scholar] [CrossRef]
- Mallouli, M.; Chouchane, M. Piezoelectric energy harvesting using macro fiber composite patches. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 4331–4349. [Google Scholar] [CrossRef]
- Panigrahi, B.; Sitikantha, D.; Bhuyan, A.; Panda, H.; Mohanta, K. Dielectric and ferroelectric properties of pvdf thin film for biomechanical energy harvesting. Mater. Today Proc. 2021, 41, 335–339. [Google Scholar] [CrossRef]
- Kim, H.; Batra, A.; Priya, S.; Uchino, K.; Markley, D.; Newnham, R.; Hofmann, H. Energy harvesting using a piezoelectric “cymbal” transducer in dynamic environment. Jpn. J. Appl. Phys. 2004, 43, 6178–6183. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, J.; Ling, J. Finite element analysis of cymbal piezoelectric transducers for harvesting energy from asphalt pavement. J. Ceram. Soc. Jpn. 2010, 118, 909–915. [Google Scholar] [CrossRef]
- Yesner, G.; Jasim, A.; Wang, H.; Basily, B.; Maher, A.; Safari, A. Energy harvesting and evaluation of a novel piezoelectric bridge transducer. Sens. Actuators A Phys. 2019, 285, 348–354. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J. Performance exploration of a radially layered cymbal piezoelectric energy harvester under road traffic induced low frequency vibration. Iop Conf. Ser. Mater. Sci. Eng. 2019, 542, 12075. [Google Scholar] [CrossRef]
- Jin, H.; Li, Z.; Wang, Z.; Tang, S. Vibration energy harvesting from tunnel invert-filling using rubberized concrete. Environ. Sci. Pollut. Res. 2023, 30, 30167–30182. [Google Scholar] [CrossRef] [PubMed]
- Citroni, R.; Di Paolo, F.; Livreri, P. Evaluation of an optical energy harvester for SHM application. AEU Int. J. Electron. Commun. 2019, 111, 152918. [Google Scholar] [CrossRef]
- Sezer, N.; Koc, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
Parameter | Value | Unit | Description |
---|---|---|---|
20.710−12 | m2/N | Flexibility coefficient | |
59310−12 | C/N | Piezoelectric strain constant | |
3400 | / | Relative dielectric constant | |
1.271011 | N/m2 | Elastic coefficients in direction 1 | |
8.021010 | N/m2 | Elastic coefficients in direction 2 | |
8.471010 | N/m2 | Elastic coefficients in direction 3 | |
1.171011 | N/m2 | Elastic coefficients in direction 4 | |
2.301010 | N/m2 | Elastic coefficients in direction 5 | |
2.301010 | N/m2 | Elastic coefficients in direction 6 | |
2.351010 | N/m2 | Elastic coefficients in direction 7 | |
17.03 | C/m2 | Piezoelectric stress constants at X-axis | |
23.24 | C/m2 | Piezoelectric stress constants at Y-axis | |
−6.62 | C/m2 | Piezoelectric stress constants at Z-axis | |
1433.6 | / | Relative dielectric constant | |
1704.4 | / | Stress-charge constant | |
7500 | kg/m3 | Density |
Parameter | Elastic Modulus/Pa | Density/(kg/m3) | Poisson’s Ratio |
---|---|---|---|
Steel | 2 × 109 | 7850 | 0.3 |
Variable | Disk Structure | Cymbal Structure | Spherical Structure |
---|---|---|---|
Output voltage/V | 0.62 | 6.5 | 6.7 |
Electrical output power/mW | 2.03 × 10−3 | 0.15 | 0.23 |
Parameter | Value | Unit | Description |
---|---|---|---|
H | 2 | mm | Piezoelectric layer thickness |
R | 16 | mm | Piezoelectric layer radius |
r1 | 11 | mm | Vertical axis radius of the inner cavity of the spherical shell |
r2 | 11 | mm | Horizontal axis radius of the inner cavity of the spherical shell |
I | 1 | 1 | Axis ratio |
T | 5 | mm | Spherical shell thickness |
Parameter | Value | Unit | Description |
---|---|---|---|
H | 2 | mm | Piezoelectric layer thickness |
R | 16 | mm | Piezoelectric layer radius |
r1 | 5 | mm | Vertical axis radius of the inner cavity of the spherical shell |
r2 | 12 | mm | Horizontal axis radius of the inner cavity of the spherical shell |
I | 0.4 | 1 | Axis ratio |
T | 4 | mm | Spherical shell thickness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Li, Z.; Jin, H.; Yin, D.; Yan, J. Design of an Energy Harvester Based on a Rubber Bearing Floating Slab Track. Appl. Sci. 2023, 13, 12287. https://doi.org/10.3390/app132212287
Yu S, Li Z, Jin H, Yin D, Yan J. Design of an Energy Harvester Based on a Rubber Bearing Floating Slab Track. Applied Sciences. 2023; 13(22):12287. https://doi.org/10.3390/app132212287
Chicago/Turabian StyleYu, Shuo, Zheng Li, Hao Jin, Donghao Yin, and Jiajia Yan. 2023. "Design of an Energy Harvester Based on a Rubber Bearing Floating Slab Track" Applied Sciences 13, no. 22: 12287. https://doi.org/10.3390/app132212287
APA StyleYu, S., Li, Z., Jin, H., Yin, D., & Yan, J. (2023). Design of an Energy Harvester Based on a Rubber Bearing Floating Slab Track. Applied Sciences, 13(22), 12287. https://doi.org/10.3390/app132212287