Tracking Cerebral Microvascular and Metabolic Parameters during Cardiac Arrest and Cardiopulmonary Resuscitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hemodynamic Model
2.2. Cardiac Arrest and CPR Setup
2.3. Resuscitation Protocol
2.4. Cerebral hNIRS Setup and Measurements
2.5. Analysis Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yan, S.; Gan, Y.; Jiang, N.; Wang, R.; Chen, Y.; Luo, Z.; Zong, Q.; Chen, S.; Lv, C. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: A systematic review and meta-analysis. Crit. Care 2020, 24, 61. [Google Scholar] [CrossRef] [PubMed]
- Smith, M. Shedding light on the adult brain: A review of the clinical applications of near-infrared spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4452–4469. [Google Scholar] [CrossRef] [PubMed]
- Kolyva, C.; Ghosh, A.; Tachtsidis, I.; Highton, D.; Cooper, C.E.; Smith, M.; Elwell, C.E. Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin. NeuroImage 2014, 85 Pt 1, 234–244. [Google Scholar] [CrossRef]
- Hashem, M.; Zhang, Q.; Wu, Y.; Johnson, T.W.; Dunn, J.F. Using a multimodal near-infrared spectroscopy and MRI to quantify gray matter metabolic rate for oxygen: A hypothermia validation study. NeuroImage 2020, 206, 116315. [Google Scholar] [CrossRef] [PubMed]
- Sassaroli, A.; Kainerstorfer, J.M.; Fantini, S. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy. J. Theor. Biol. 2016, 389, 132–145. [Google Scholar] [CrossRef]
- Hiura, M.; Funaki, A.; Shibutani, H.; Takahashi, K.; Katayama, Y. Dissociated coupling between cerebral oxygen metabolism and perfusion in the prefrontal cortex during exercise: A NIRS study. Front. Physiol. 2023, 14, 1165939. [Google Scholar] [CrossRef]
- Blaney, G.; Fernandez, C.; Sassaroli, A.; Fantini, S. Dual-slope imaging of cerebral hemodynamics with frequency-domain near-infrared spectroscopy. Neurophotonics 2023, 10, 013508. [Google Scholar] [CrossRef]
- Blaney, G.; Sassaroli, A.; Fantini, S. Algorithm for determination of thresholds of significant coherence in time-frequency analysis. Biomed. Signal Process. Control 2020, 56, 101704. [Google Scholar] [CrossRef]
- Fantini, S. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS). NeuroImage 2014, 85 Pt 1, 202–221. [Google Scholar] [CrossRef]
- Banaji, M.; Mallet, A.; Elwell, C.E.; Nicholls, P.; Cooper, C.E. A Model of Brain Circulation and Metabolism: NIRS Signal Changes during Physiological Challenges. PLoS Comput. Biol. 2008, 4, e1000212. [Google Scholar] [CrossRef]
- Russell-Buckland, J.; Tachtsidis, I. Developing a Model to Simulate the Effect of Hypothermia on Cerebral Blood Flow and Metabolism. Adv. Exp. Med. Biol. 2020, 1232, 299–306. [Google Scholar] [CrossRef]
- Russell-Buckland, J.; Barnes, C.P.; Tachtsidis, I. A Bayesian framework for the analysis of systems biology models of the brain. PLoS Comput. Biol. 2019, 15, e1006631. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.F.; Lloyd-Fox, S.; Kaynezhad, P.; Tachtsidis, I.; Johnson, M.H.; Elwell, C.E. Non-invasive measurement of a metabolic marker of infant brain function. Sci. Rep. 2017, 7, 1330. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, M.; Scholkmann, F.; Wolf, U.; Wolf, M.; Elwell, C.; Tachtsidis, I. Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy. NeuroImage 2016, 143, 91–105. [Google Scholar] [CrossRef]
- Hapuarachchi, T.; Scholkmann, F.; Caldwell, M.; Hagmann, C.; Kleiser, S.; Metz, A.J.; Pastewski, M.; Wolf, M.; Tachtsidis, I. Simulation of Preterm Neonatal Brain Metabolism During Functional Neuronal Activation Using a Computational Model. Adv. Exp. Med. Biol. 2016, 876, 111–120, E1–E2. [Google Scholar] [CrossRef]
- Caldwell, M.; Moroz, T.; Hapuarachchi, T.; Bainbridge, A.; Robertson, N.J.; Cooper, C.E.; Tachtsidis, I. Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia. PLoS ONE 2015, 10, e0140171. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, R.; Lin, S.; Mohindra, R.; Ramadeen, A.; Toronov, V.; Dorian, P. Study of the Effects of Epinephrine on Cerebral Oxygenation and Metabolism During Cardiac Arrest and Resuscitation by Hyperspectral Near-Infrared Spectroscopy. Crit. Care Med. 2019, 47, e349–e357. [Google Scholar] [CrossRef]
- McAnally, J.R. The use of animals in research … the views of a young researcher. J. Okla. Dent. Assoc. 1993, 83, 34–35. [Google Scholar]
- Nosrati, R.; Lin, S.; Ramadeen, A.; Monjazebi, D.; Dorian, P.; Toronov, V. Cerebral Hemodynamics and Metabolism During Cardiac Arrest and Cardiopulmonary Resuscitation Using Hyperspectral Near Infrared Spectroscopy. Circ. J. 2017, 81, 879–887. [Google Scholar] [CrossRef]
- Nosrati, R.; Ramadeen, A.; Hu, X.; Woldemichael, E.; Kim, S.; Dorian, P.; Toronov, V. Simultaneous measurement of cerebral and muscle tissue vc during cardiac arrest and cardiopulmonary resuscitation. In Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics II; SPIE: Bellingham, WA, USA, 2015; Volume 9305, pp. 164–169. [Google Scholar]
- Zhao, H.; Tanikawa, Y.; Gao, F.; Onodera, Y.; Sassaroli, A.; Tanaka, K.; Yamada, Y. Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR. Phys. Med. Biol. 2002, 47, 2075–2093. [Google Scholar] [CrossRef]
- Strangman, G.E.; Li, Z.; Zhang, Q. Depth Sensitivity and Source-Detector Separations for Near Infrared Spectroscopy Based on the Colin27 Brain Template. PLoS ONE 2013, 8, e66319. [Google Scholar] [CrossRef] [PubMed]
- Scholkmann, F.; Wolf, M. General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J. Biomed. Opt. 2013, 18, 105004. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, H.Z.; Toronov, V.; Elliott, J.T.; Diop, M.; Lee, T.-Y.; Lawrence, K.S. Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations. Biomed. Opt. Express 2012, 3, 2761–2770. [Google Scholar] [CrossRef] [PubMed]
- Cassot, F.; Lauwers, F.; Fouard, C.; Prohaska, S.; Lauwers-Cances, V. A Novel Three-Dimensional Computer-Assisted Method for a Quantitative Study of Microvascular Networks of the Human Cerebral Cortex. Microcirculation 2006, 13, 1–18. [Google Scholar] [CrossRef]
- Pries, A.R.; Secomb, T.W.; Gaehtgens, P. Structure and hemodynamics of microvascular networks: Heterogeneity and correlations. Am. J. Physiol. 1995, 269 Pt 2, H1713–H1722. [Google Scholar] [CrossRef]
- Secomb, T.W.; Hsu, R.; Dewhirst, M.W.; Klitzman, B.; Gross, J.F. Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 481–489. [Google Scholar] [CrossRef]
- Zheng, Y.; Martindale, J.; Johnston, D.; Jones, M.; Berwick, J.; Mayhew, J. A Model of the Hemodynamic Response and Oxygen Delivery to Brain. NeuroImage 2002, 16 Pt 1, 617–637. [Google Scholar] [CrossRef]
- Albaeni, A.; Eid, S.M.; Akinyele, B.; Kurup, L.N.; Vaidya, D.; Chandra-Strobos, N. The association between post resuscitation hemoglobin level and survival with good neurological outcome following out of hospital cardiac arrest. Resuscitation 2016, 99, 7–12. [Google Scholar] [CrossRef]
- Schriefl, C.; Schoergenhofer, C.; Ettl, F.; Poppe, M.; Clodi, C.; Mueller, M.; Grafeneder, J.; Jilma, B.; Magnet, I.A.M.; Buchtele, N.; et al. Change of Hemoglobin Levels in the Early Post-cardiac Arrest Phase Is Associated With Outcome. Front. Med. 2021, 8, 639803. [Google Scholar] [CrossRef]
- Liang, Z.; Tian, H.; Yang, H.-C.S.; Arimitsu, T.; Takahashi, T.; Sassaroli, A.; Fantini, S.; Niu, H.; Minagawa, Y.; Tong, Y. Tracking Brain Development From Neonates to the Elderly by Hemoglobin Phase Measurement Using Functional Near-Infrared Spectroscopy. IEEE J. Biomed. Health Inform. 2021, 25, 2497–2509. [Google Scholar] [CrossRef]
- Ntonas, A.; Katsourakis, A.; Galanis, N.; Filo, E.; Noussios, G. Comparative Anatomical Study Between the Human and Swine Liver and Its Importance in Xenotransplantation. Cureus 2020, 12, e9411. [Google Scholar] [CrossRef] [PubMed]
- Lelovas, P.P.; Kostomitsopoulos, N.G.; Xanthos, T.T. A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 432–438. [Google Scholar] [PubMed]
- Bottino, D.A.; Bouskela, E. Non-invasive techniques to access in vivo the skin microcirculation in patients. Front. Med. 2023, 9, 1099107. [Google Scholar] [CrossRef] [PubMed]
- Boas, D.A.; Sakadžic, S.; Selb, J.; Farzam, P.; Franceschini, M.A.; Carp, S.A. Establishing the diffuse correlation spectroscopy signal relationship with blood flow. Neurophotonics 2016, 3, 031412. [Google Scholar] [CrossRef]
- Shoemaker, L.N.; Milej, D.; Mistry, J.; Lawrence, K.S. Using depth-enhanced diffuse correlation spectroscopy and near-infrared spectroscopy to isolate cerebral hemodynamics during transient hypotension. Neurophotonics 2023, 10, 025013. [Google Scholar] [CrossRef]
- Rajaram, A.; Milej, D.; Suwalski, M.; Yip, L.C.M.; Guo, L.R.; Chu, M.W.A.; Chui, J.; Diop, M.; Murkin, J.M.; Lawrence, K.S. Optical monitoring of cerebral perfusion and metabolism in adults during cardiac surgery with cardiopulmonary bypass. Biomed. Opt. Express 2020, 11, 5967–5981. [Google Scholar] [CrossRef]
Parameter/Analysis | Average ± Std (Baseline) | Reference Range | Average Difference | p-Value |
---|---|---|---|---|
(%) | 0.906 ± 0.060 | 0.8–0.99 | −0.004 | 0.855 |
ctHb (mM) | 2.103 ± 0.097 | 2.0–2.6 | +0.065 | 0.040 |
Fp(c) | 0.559 ± 0.176 | 0.2–0.8 | −0.021 | 0.760 |
F(c) | 0.705 ± 0.089 | 0.6–0.9 | +0.073 | 0.008 |
αo (s−1) | 0.762 ± 0.115 | 0.6–1.0 | +0.035 | 0.399 |
fc(v) | 0.460 ± 0.102 | 0.1–0.7 | +0.008 | 0.829 |
L(c) (mm) | 0.553 ± 0.092 | 0.4–0.8 | −0.041 | 0.368 |
L(v) (mm) | 1.012 ± 0.028 | 0.5–1.2 | −0.007 | 0.637 |
v(c) (mm/s) | 0.819 ± 0.087 | 0.6–1.0 | +0.029 | 0.466 |
φ(a) | 0.031 ± 0.022 | 0.001–0.05 | −0.009 | 0.177 |
φ(c) | 0.012 ± 0.011 | 0.005–0.05 | +0.002 | 0.438 |
φ(v) | 0.009 ± 0.012 | 0.001–0.05 | +0.002 | 0.561 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalifehsoltani, N.; Rennie, O.; Mohindra, R.; Lin, S.; Toronov, V. Tracking Cerebral Microvascular and Metabolic Parameters during Cardiac Arrest and Cardiopulmonary Resuscitation. Appl. Sci. 2023, 13, 12303. https://doi.org/10.3390/app132212303
Khalifehsoltani N, Rennie O, Mohindra R, Lin S, Toronov V. Tracking Cerebral Microvascular and Metabolic Parameters during Cardiac Arrest and Cardiopulmonary Resuscitation. Applied Sciences. 2023; 13(22):12303. https://doi.org/10.3390/app132212303
Chicago/Turabian StyleKhalifehsoltani, Nima, Olivia Rennie, Rohit Mohindra, Steve Lin, and Vladislav Toronov. 2023. "Tracking Cerebral Microvascular and Metabolic Parameters during Cardiac Arrest and Cardiopulmonary Resuscitation" Applied Sciences 13, no. 22: 12303. https://doi.org/10.3390/app132212303
APA StyleKhalifehsoltani, N., Rennie, O., Mohindra, R., Lin, S., & Toronov, V. (2023). Tracking Cerebral Microvascular and Metabolic Parameters during Cardiac Arrest and Cardiopulmonary Resuscitation. Applied Sciences, 13(22), 12303. https://doi.org/10.3390/app132212303