WERECE: An Unsupervised Method for Educational Concept Extraction Based on Word Embedding Refinement
Abstract
:1. Introduction
- (1)
- A novel unsupervised method is proposed for educational concept extraction based on word embedding refinement. The proposed method, named word embedding refinement–based educational concept extraction (WERECE), efficiently integrates the semantic information of domain concepts. Its performance surpasses popular baselines and state-of-the-art algorithms in educational concept extraction.
- (2)
- We introduce a manifold learning algorithm to adapt pre-trained large language models to a downstream natural language processing (NLP) task. The algorithm fully considers geometric information in semantic computation and reinforces semantic clustering among educational concepts.
- (3)
- A discriminant function based on semantic clustering and Box–Cox transformation is developed to improve the accuracy and reliability of educational concept extraction.
- (4)
- Two real-world datasets are created for educational concept extraction and used to experimentally assess WERECE’s effectiveness. We also evaluate how WERECE’s parameter settings influence its performance.
2. Related Work
2.1. Generic Concept Extraction Methods
2.2. Concept Extraction in Education
3. Methods
3.1. Domain Concept Representation with Pre-Trained Word Embeddings
3.2. Manifold Learning-Based Word Re-Embedding for Domain Concepts
3.3. K-Means Clustering Algorithm
3.4. Discriminant Function Based on Cluster Centroids
4. Experiments
- (1)
- How feasible is this method for educational concept extraction?
- (2)
- How does this method perform when the dimensions of refined embedding vectors, the number of seed concepts, and the number of clusters change?
- (3)
- How effective is this method for educational concept extraction when compared with baselines?
4.1. Dataset Preparation
4.2. Baselines and Evaluation Metrics
4.3. Experimental Results
4.3.1. Results of Feasibility Assessment
4.3.2. Effects of Parameter Settings on WERECE Performance
4.3.3. Comparisons of the Proposed Method with Baselines
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, X.; Zhang, F.; Li, J.; Guo, T.; Aziz, A.; Jin, A.; Xia, F. Educational Big Data: Predictions, Applications and Challenges. Big Data Res. 2021, 26, 100270. [Google Scholar] [CrossRef]
- Shamsfard, M.; Barforoush, A.A. The State of the Art in Ontology Learning: A Framework for Comparison. Knowl. Eng. Rev. 2003, 18, 293–316. [Google Scholar] [CrossRef]
- Poria, S.; Hussain, A.; Cambria, E.; Poria, S.; Hussain, A.; Cambria, E. Concept Extraction from Natural Text for Concept Level Text Analysis. In Multimodal Sentiment Analysis; Springer: Cham, Switzerland, 2018; pp. 79–84. [Google Scholar]
- Fu, S.; Chen, D.; He, H.; Liu, S.; Moon, S.; Peterson, K.J.; Shen, F.; Wang, L.; Wang, Y.; Wen, A.; et al. Clinical Concept Extraction: A Methodology Review. J. Biomed. Inform. 2020, 109, 103526. [Google Scholar] [CrossRef] [PubMed]
- Firoozeh, N.; Nazarenko, A.; Alizon, F.; Daille, B. Keyword Extraction: Issues and Methods. Nat. Lang. Eng. 2020, 26, 259–291. [Google Scholar] [CrossRef]
- Szwed, P. Concepts Extraction from Unstructured Polish Texts: A Rule Based Approach. In Proceedings of the 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 355–364. [Google Scholar]
- Stanković, R.; Krstev, C.; Obradović, I.; Lazić, B.; Trtovac, A. Rule-Based Automatic Multi-Word Term Extraction and Lemmatization. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, 23–28 May 2016; pp. 507–514. [Google Scholar]
- Gong, L.; Yang, R.; Liu, Q.; Dong, Z.; Chen, H.; Yang, G. A Dictionary-Based Approach for Identifying Biomedical Concepts. Int. J. Pattern Recognit. Artif. Intell. 2017, 31, 1757004. [Google Scholar] [CrossRef]
- Aizawa, A. An Information-Theoretic Perspective of Tf--Idf Measures. Inf. Process. Manag. 2003, 39, 45–65. [Google Scholar] [CrossRef]
- Mihalcea, R.; Tarau, P. Textrank: Bringing Order into Text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain, 25–26 July 2004; pp. 404–411. [Google Scholar]
- Zhang, Z.; Gao, J.; Ciravegna, F. Semre-Rank: Improving Automatic Term Extraction by Incorporating Semantic Relatedness with Personalised Pagerank. ACM Trans. Knowl. Discov. Data 2018, 12, 1–41. [Google Scholar] [CrossRef]
- Tulkens, S.; Šuster, S.; Daelemans, W. Unsupervised Concept Extraction from Clinical Text through Semantic Composition. J. Biomed. Inform. 2019, 91, 103120. [Google Scholar] [CrossRef]
- Xiong, A.; Liu, D.; Tian, H.; Liu, Z.; Yu, P.; Kadoch, M. News Keyword Extraction Algorithm Based on Semantic Clustering and Word Graph Model. Tsinghua Sci. Technol. 2021, 26, 886–893. [Google Scholar] [CrossRef]
- Daems, O.; Erkens, M.; Malzahn, N.; Hoppe, H.U. Using Content Analysis and Domain Ontologies to Check Learners’ Understanding of Science Concepts. J. Comput. Educ. 2014, 1, 113–131. [Google Scholar] [CrossRef]
- Abyaa, A.; Khalidi Idrissi, M.; Bennani, S. Learner Modelling: Systematic Review of the Literature from the Last 5 Years. Educ. Technol. Res. Dev. 2019, 67, 1105–1143. [Google Scholar] [CrossRef]
- Chen, N.-S.; Wei, C.-W.; Chen, H.-J. Mining E-Learning Domain Concept Map from Academic Articles. Comput. Educ. 2008, 50, 1009–1021. [Google Scholar] [CrossRef]
- Conde, A.; Larrañaga, M.; Arruarte, A.; Elorriaga, J.A.; Roth, D. Litewi: A Combined Term Extraction and Entity Linking Method for Eliciting Educational Ontologies from Textbooks. J. Assoc. Inf. Sci. Technol. 2016, 67, 380–399. [Google Scholar] [CrossRef]
- Pan, L.; Wang, X.; Li, C.; Li, J.; Tang, J. Course Concept Extraction in MOOCS via Embedding-Based Graph Propagation. In Proceedings of the Eighth International Joint Conference on Natural Language Processing, Taipei, Taiwan, 28–30 November 2017; Asian Federation of Natural Language Processing: Volume 1: Long Papers. pp. 875–884. [Google Scholar]
- Albahr, A.; Che, D.; Albahar, M. A Novel Cluster-Based Approach for Keyphrase Extraction from MOOC Video Lectures. Knowl. Inf. Syst. 2021, 63, 1663–1686. [Google Scholar] [CrossRef]
- Liu, J.; Shao, X. An Improved Extracting Chinese Term Method Based on C/NC-Value. In Proceedings of the 2010 International Symposium on Intelligence Information Processing and Trusted Computing, Wuhan, China, 28–29 October 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Zhang, L.; Li, X.-P.; Zhang, F.-B.; Hu, B. Research on Keyword Extraction and Sentiment Orientation Analysis of Educational Texts. J. Comput. 2017, 28, 301–313. [Google Scholar]
- Lu, M.; Wang, Y.; Yu, J.; Du, Y.; Hou, L.; Li, J. Distantly Supervised Course Concept Extraction in MOOCs with Academic Discipline. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, ON, Canada, 9–14 July 2023; Association for Computational Linguistics: Stroudsburg, PA, USA, 2023. Volume 1: Long Papers. [Google Scholar]
- Kang, Y.-B.; Haghighi, P.D.; Burstein, F. CFinder: An Intelligent Key Concept Finder from Text for Ontology Development. Expert Syst. Appl. 2014, 41, 4494–4504. [Google Scholar] [CrossRef]
- Levow, G.-A.; Oard, D.W.; Resnik, P. Dictionary-Based Techniques for Cross-Language Information Retrieval. Inf. Process. Manag. 2005, 41, 523–547. [Google Scholar] [CrossRef]
- Bellaachia, A.; Al-Dhelaan, M. NE-Rank: A Novel Graph-Based Keyphrase Extraction in Twitter. In Proceedings of the 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Macau, China, 4–7 December 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Bougouin, A.; Boudin, F.; Daille, B. Topicrank: Graph-Based Topic Ranking for Keyphrase Extraction. In Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP), Nagoya, Japan, 14–19 October 2013; pp. 543–551. [Google Scholar]
- Boudin, F. Unsupervised Keyphrase Extraction with Multipartite Graphs. arXiv 2018, arXiv:1803.08721. [Google Scholar]
- Kong, S.C.; Li, P.; Song, Y. Evaluating a Bilingual Text-Mining System with a Taxonomy of Key Words and Hierarchical Visualization for Understanding Learner-Generated Text. ACM J. Educ. Resour. Comput. 2018, 56, 369–395. [Google Scholar] [CrossRef]
- Chau, H.; Labutov, I.; Thaker, K.; He, D.; Brusilovsky, P. Automatic Concept Extraction for Domain and Student Modeling in Adaptive Textbooks. Int. J. Artif. Intell. Educ. 2021, 31, 820–846. [Google Scholar] [CrossRef]
- Peng, X.; Han, C.; Ouyang, F.; Liu, Z. Topic Tracking Model for Analyzing Student-Generated Posts in SPOC Discussion Forums. Int. J. Educ. Technol. High. Educ. 2020, 17, 35. [Google Scholar] [CrossRef]
- Mikolov, T.; Yih, W.-T.; Zweig, G. Linguistic Regularities in Continuous Space Word Representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, GA, USA, 9–14 June 2013; Association for Computational Linguistics: Stroudsburg, PA, USA, 2013; pp. 746–751. [Google Scholar]
- Niven, T.; Kao, H.-Y. Probing Neural Network Comprehension of Natural Language Arguments. arXiv 2019, arXiv:1907.07355. [Google Scholar]
- Chalkidis, I.; Fergadiotis, M.; Malakasiotis, P.; Aletras, N.; Androutsopoulos, I. LEGAL-BERT: The Muppets Straight out of Law School. arXiv 2020, arXiv:2010.02559. [Google Scholar]
- Wang, Y.; Liu, S.; Afzal, N.; Rastegar-Mojarad, M.; Wang, L.; Shen, F.; Kingsbury, P.; Liu, H. A Comparison of Word Embeddings for the Biomedical Natural Language Processing. J. Biomed. Inform. 2018, 87, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Clavié, B.; Gal, K. Edubert: Pretrained Deep Language Models for Learning Analytics. arXiv 2019, arXiv:1912.00690. [Google Scholar]
- Sezerer, E.; Tekir, S. A Survey on Neural Word Embeddings. arXiv 2021, arXiv:2110.01804. [Google Scholar]
- Wang, S.; Zhang, Y.; Shi, W.; Zhang, G.; Zhang, J.; Lin, N.; Zong, C. A Large Dataset of Semantic Ratings and Its Computational Extension. Sci Data 2023, 10, 106. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Song, Y.; Shi, S.; Li, J.; Zhang, H. Directional Skip-Gram: Explicitly Distinguishing Left and Right Context for Word Embeddings. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018. Volume 2 (Short Papers). [Google Scholar]
- Patel, A.; Sands, A.; Callison-Burch, C.; Apidianaki, M. Magnitude: A Fast, Efficient Universal Vector Embedding Utility Package. arXiv 2018, arXiv:1810.11190. [Google Scholar]
- Hasan, S.; Curry, E. Word Re-Embedding via Manifold Dimensionality Retention. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017. [Google Scholar]
- Yonghe, C.; Lin, H.; Yang, L.; Diao, Y.; Zhang, S.; Xiaochao, F. Refining Word Reesprentations by Manifold Learning. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 5394–5400. [Google Scholar]
- Zhao, W.; Zhou, D.; Li, L.; Chen, J. Manifold Learning-Based Word Representation Refinement Incorporating Global and Local Information. In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; International Committee on Computational Linguistics: Stroudsburg, PA, USA, 2020. [Google Scholar]
- Tenenbaum, J.B.; Silva, V.D.; Langford, J.C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef]
- Xu, D.; Tian, Y. A Comprehensive Survey of Clustering Algorithms. Ann. Data Sci. 2015, 2, 165–193. [Google Scholar] [CrossRef]
- Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat. Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Berkhin, P. A Survey of Clustering Data Mining Techniques. In Grouping Multidimensional Data; Springer: Berlin/Heidelberg, Germany, 2006; pp. 25–71. ISBN 9783540283485. [Google Scholar]
- Désir, C.; Bernard, S.; Petitjean, C.; Heutte, L. One Class Random Forests. Pattern Recognit. 2013, 46, 3490–3506. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Utsumi, A. Exploring What Is Encoded in Distributional Word Vectors: A Neurobiologically Motivated Analysis. Cogn. Sci. 2020, 44, e12844. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.J.; Liu, H. An Examination of the Statistical Laws of Semantic Change in Clinical Notes. AMIA Jt. Summits Transl. Sci. Proc. 2021, 2021, 515–524. [Google Scholar]
- Magister, L.C.; Barbiero, P.; Kazhdan, D.; Siciliano, F.; Ciravegna, G.; Silvestri, F.; Jamnik, M.; Lio, P. Encoding Concepts in Graph Neural Networks. arXiv 2022, arXiv:2207.13586. [Google Scholar]
- Yu, J.; Luo, G.; Xiao, T.; Zhong, Q.; Wang, Y.; Feng, W.; Luo, J.; Wang, C.; Hou, L.; Li, J.; et al. MOOCCube: A Large-Scale Data Repository for NLP Applications in MOOCs. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 3135–3142. [Google Scholar]
- Lin, Y.; Feng, S.; Lin, F.; Zeng, W.; Liu, Y.; Wu, P. Adaptive Course Recommendation in MOOCs. Knowl.-Based Syst. 2021, 224, 107085. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Q.; Zhao, G.; Huang, H.; Huang, T. Thesaurus Dataset of Educational Technology in Chinese. Br. J. Educ. Technol. 2015, 46, 1118–1122. [Google Scholar] [CrossRef]
- Kang, Y.-B.; Haghigh, P.D.; Burstein, F. TaxoFinder: A Graph-Based Approach for Taxonomy Learning. IEEE Trans. Knowl. Data Eng. 2016, 28, 524–536. [Google Scholar] [CrossRef]
- Desul, S.; Madurai Meenachi, N.; Venkatesh, T.; Gunta, V.; Gowtham, R.; Magapu, S.B. Method for Automatic Key Concepts Extraction: Application to Documents in the Domain of Nuclear Reactors. Electron. Libr. 2018, 37, 2–15. [Google Scholar] [CrossRef]
- Wu, S.; Wu, F.; Chang, Y.; Wu, C.; Huang, Y. Automatic Construction of Target-Specific Sentiment Lexicon. Expert Syst. Appl. 2019, 116, 285–298. [Google Scholar] [CrossRef]
- Papagiannopoulou, E.; Tsoumakas, G.; Papadopoulos, A. Keyword Extraction Using Unsupervised Learning on the Document’s Adjacency Matrix. In Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15), Mexico City, Mexico, 11 June 2021; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021. [Google Scholar]
- Zhang, J.; Zhang, J.; Wang, K.; Yan, W. Should Doctors Use or Avoid Medical Terms? The Influence of Medical Terms on Service Quality of E-Health. Electr. Commer. Res. 2021, 23, 1775–1805. [Google Scholar] [CrossRef]
- Lu, W.; Zhou, Y.; Yu, J.; Jia, C. Concept Extraction and Prerequisite Relation Learning from Educational Data. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 9678–9685. [Google Scholar]
- Zhao, D.; Wang, J.; Chu, Y.; Zhang, Y.; Yang, Z.; Lin, H. Improving Biomedical Word Representation with Locally Linear Embedding. Neurocomputing 2021, 447, 172–182. [Google Scholar] [CrossRef]
- Sharif, W.; Mumtaz, S.; Shafiq, Z.; Riaz, O.; Ali, T.; Husnain, M.; Choi, G.S. An Empirical Approach for Extreme Behavior Identification through Tweets Using Machine Learning. Appl. Sci. 2019, 9, 3723. [Google Scholar] [CrossRef]
- Aminanto, M.E.; Ban, T.; Isawa, R.; Takahashi, T.; Inoue, D. Threat Alert Prioritization Using Isolation Forest and Stacked Auto Encoder with Day-Forward-Chaining Analysis. IEEE Access 2020, 8, 217977–217986. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Y.; Chu, Y.; Lin, H.; Zhao, D.; Yang, L.; Shen, C.; Yang, Z.; Wang, J. Manifold biomedical text sentence embedding. Neurocomputing 2022, 492, 117–125. [Google Scholar] [CrossRef]
- Bicego, M.; Baldo, S. Properties of the Box–Cox transformation for pattern classification. Neurocomputing 2016, 218, 390–400. [Google Scholar] [CrossRef]
- Blum, L.; Elgendi, M.; Menon, C. Impact of Box-Cox Transformation on Machine-Learning Algorithms. Front. Artif. Intell. 2022, 5, 877569. [Google Scholar] [CrossRef]
- Wang, X.; Feng, W.; Tang, J.; Zhong, Q. Course concept extraction in MOOC via explicit/implicit representation. In Proceedings of the Third International Conference on Data Science in Cyberspace (DSC), Guangzhou, China, 18–21 June 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Ahmed, R.; Ahmad, T.; Almutairi, F.M.; Qahtani, A.M.; Alsufyani, A.; Almutiry, O. Fuzzy semantic classification of multi-domain E-learning concept. Mob. Netw. Appl. 2021, 26, 2206–2215. [Google Scholar] [CrossRef]
- Alba, A.; Coden, A.; Gentile, A.L.; Gruhl, D.; Ristoski, P.; Welch, S. Multi-Lingual Concept Extraction with Linked Data and Human-in-the-Loop. In Proceedings of the Knowledge Capture Conference, Austin, TX, USA, 4–6 December 2017; ACM: New York, NY, USA, 2017. [Google Scholar]
- Morales-Hernández, A.; Van Nieuwenhuyse, I.; Rojas Gonzalez, S. A Survey on Multi-Objective Hyperparameter Optimization Algorithms for Machine Learning. Artif. Intell. Rev. 2023, 56, 8043–8093. [Google Scholar] [CrossRef]
Methods | Core Processes | Strengths | Weaknesses | Articles |
---|---|---|---|---|
Rule-based methods |
|
|
| [6,7] |
Dictionary-based methods |
|
|
| [8,24] |
Statistical-based methods |
|
|
| [9,25,26,27] |
Semantic-based methods |
|
|
| [12,13] |
Statistics | EDU-DT | EDUTECH-DT | |||
---|---|---|---|---|---|
Training Set | Test Set | Training Set | Test Set | ||
Number of concepts | 2000 | 1956 | 1832 | 1016 | |
Concept length | Max. | 21 | 18 | 15 | 20 |
Min. | 1 | 1 | 1 | 1 | |
Average | 4.96 | 4.90 | 5.11 | 4.98 | |
Standard deviation | 1.84 | 2.15 | 1.70 | 2.19 |
Parameter | Value Ranges | ||
---|---|---|---|
Start | End | Step | |
Dimension of refined embedding vectors (M) | 5 | 200 | 15 |
Number of seeds (N) | 300 | 1800 | 150 |
Number of clusters (K) | 2 | 42 | 4 |
Method | Evaluation Metrics | ||
---|---|---|---|
Precision | Recall | F1 Score | |
TextRank | 0.337 ± 0.014 | 0.705 ± 0.028 | 0.456 ± 0.018 |
TF–IDF | 0.378 ± 0.016 | 0.792 ± 0.033 | 0.512 ± 0.022 |
Isolation Forest | 0.544 ± 0.066 | 1.000 ± 0.000 | 0.702 ± 0.056 |
K-means | 0.551 ± 0.295 | 0.710 ± 0.404 | 0.619 ± 0.343 |
One-Class SVM | 0.768 ± 0.015 | 0.770 ± 0.037 | 0.768 ± 0.017 |
The proposed Method | 0.859 ± 0.022 | 0.870 ± 0.037 | 0.864 ± 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Ding, R.; Wu, X.; Chen, S.; Zhang, J.; Liu, L.; Zheng, Y. WERECE: An Unsupervised Method for Educational Concept Extraction Based on Word Embedding Refinement. Appl. Sci. 2023, 13, 12307. https://doi.org/10.3390/app132212307
Huang J, Ding R, Wu X, Chen S, Zhang J, Liu L, Zheng Y. WERECE: An Unsupervised Method for Educational Concept Extraction Based on Word Embedding Refinement. Applied Sciences. 2023; 13(22):12307. https://doi.org/10.3390/app132212307
Chicago/Turabian StyleHuang, Jingxiu, Ruofei Ding, Xiaomin Wu, Shumin Chen, Jiale Zhang, Lixiang Liu, and Yunxiang Zheng. 2023. "WERECE: An Unsupervised Method for Educational Concept Extraction Based on Word Embedding Refinement" Applied Sciences 13, no. 22: 12307. https://doi.org/10.3390/app132212307
APA StyleHuang, J., Ding, R., Wu, X., Chen, S., Zhang, J., Liu, L., & Zheng, Y. (2023). WERECE: An Unsupervised Method for Educational Concept Extraction Based on Word Embedding Refinement. Applied Sciences, 13(22), 12307. https://doi.org/10.3390/app132212307