Optimizing Point Source Tracking in Awake Rat PET Imaging: A Comprehensive Study of Motion Detection and Best Correction Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scanner
2.2. Point Source Tracking and Motion Compensation
- LOR Centroid: To address motion-related issues, we track the rat’s movement during the scan. The centroid position of all LORs is calculated every 50 milliseconds, representing the movement center;
- Quick-Movement Subtraction: Rapid movement is identified using the parameter, derived from periods with minimal centroid variation. Such periods are indicative of minimal rat motion. Removing these high-movement intervals helps reduce motion artifacts, vital for small animal studies;
- Obtaining transformations: We use a reference image from the most stable part of the scan. The acquisition is divided into 12.5 ms frames, reconstructed with low iterations while considering rapid movement removal. Rigid transformation matrices are derived by comparing point source locations with the reference;
- Non-Precise transformations subtraction: To assess the quality of our transformations, we calculate a discrepancy measure, , for each frame:In this equation, N represents the total number of point sources, is the position of source s in the reference image, and is the position of source s in a specific frame after applying the transformation T. Frames with values below a set limit () are retained, as rigid transformations may not fully account for the rat’s flexible skin, ensuring more accurate image reconstruction;
- Final reconstruction: With the transformation parameters obtained for all frames, we proceed with the reconstruction process. Each event within a frame is transformed based on its corresponding transformation, adjusting scanner positions. As the scanner position changes during reconstruction, we need to adapt the standard Expectation Maximization Maximum Likelihood (EMML) algorithm to ensure accurate reconstruction. We modify sensitivity corrections as follows:
2.3. Study of Optimal Conditions for Awake Acquisition with Point Sources
2.4. Study of Rat Behavior in PET Scanner and How Count Subtraction Affects the Image
2.5. Comparison of Awake vs. Anesthetized Brain Reconstruction
3. Results
3.1. Study of Optimal Conditions for Awake Acquisition with Point Sources
3.2. Study of Rat Behaviour in PET Scanner and How Count Subtraction Affects the Image
3.3. Comparison of Awake vs. Anesthetized Brain Reconstruction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alstrup, A.K.; Landau, A.M.; Holden, J.E.; Jakobsen, S.; Schacht, A.C.; Audrain, H.; Wegener, G.; Hansen, A.K.; Gjedde, A.; Doudet, D.J. Effects of anesthesia and species on the uptake or binding of radioligands in vivo in the Göttingen minipig. Biomed Res. Int. 2013, 2013, 808713. [Google Scholar] [CrossRef] [PubMed]
- Toyama, H.; Ichise, M.; Liow, J.S.; Vines, D.C.; Seneca, N.M.; Modell, K.J.; Seidel, J.; Green, M.V.; Innis, R.B. Evaluation of anesthesia effects on [18F] FDG uptake in mouse brain and heart using small animal PET. Nucl. Med. Biol. 2004, 31, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Bertoglio, D.; Stroobants, S.; Staelens, S.; Verhaeghe, J. Translation of preclinical PET imaging findings: Challenges and motion correction to overcome the confounding effect of anesthetics. Front. Med. 2021, 8, 753977. [Google Scholar] [CrossRef] [PubMed]
- Alstrup, A.K.O.; Smith, D.F. Anaesthesia for positron emission tomography scanning of animal brains. Lab. Anim. 2013, 47, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.D.; Lee, D.E.; Alexoff, D.L.; Dewey, S.L.; Schiffer, W.K. Imaging dopamine release with positron emission tomography (PET) and 11C-raclopride in freely moving animals. Neuroimage 2008, 41, 1051–1066. [Google Scholar] [CrossRef] [PubMed]
- Sung, K.K.; Jang, D.P.; Lee, S.; Kim, M.; Lee, S.Y.; Kim, Y.B.; Park, C.W.; Cho, Z.H. Neural responses in rat brain during acute immobilization stress: A [F-18] FDG micro PET imaging study. Neuroimage 2009, 44, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, R.; Matsumura, A.; Mizokawa, S.; Tanaka, M.; Nakamura, F.; Kobayashi, K.; Watanabe, Y.; Inoue, O. MicroPET detection of enhanced 18F-FDG utilization by PKA inhibitor in awake rat brain. Brain Res. 2005, 1039, 199–202. [Google Scholar] [CrossRef]
- Momosaki, S.; Hatano, K.; Kawasumi, Y.; Kato, T.; Hosoi, R.; Kobayashi, K.; Inoue, O.; Ito, K. Rat-PET study without anesthesia: Anesthetics modify the dopamine D1 receptor binding in rat brain. Synapse 2004, 54, 207–213. [Google Scholar] [CrossRef]
- Suzuki, C.; Kosugi, M.; Magata, Y. Conscious rat PET imaging with soft immobilization for quantitation of brain functions: Comprehensive assessment of anesthesia effects on cerebral blood flow and metabolism. EJNMMI Res. 2021, 11, 46. [Google Scholar] [CrossRef]
- Schulz, D.; Southekal, S.; Junnarkar, S.S.; Pratte, J.F.; Purschke, M.L.; Stoll, S.P.; Ravindranath, B.; Maramraju, S.H.; Krishnamoorthy, S.; Henn, F.A.; et al. Simultaneous assessment of rodent behavior and neurochemistry using a miniature positron emission tomograph. Nat. Methods 2011, 8, 347–352. [Google Scholar] [CrossRef]
- Woody, C.; Schlyer, D.; Vaska, P.; Tomasi, D.; Solis-Najera, S.; Rooney, W.; Pratte, J.F.; Junnarkar, S.; Stoll, S.; Master, Z.; et al. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph. Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2007, 571, 102–105. [Google Scholar] [CrossRef]
- Woody, C.; Kriplani, A.; O’connor, P.; Pratte, J.F.; Radeka, V.; Rescia, S.; Schlyer, D.; Shokouhi, S.; Stoll, S.; Vaska, P.; et al. RatCAP: A small, head-mounted PET tomograph for imaging the brain of an awake RAT. Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2004, 527, 166–170. [Google Scholar] [CrossRef]
- Vaska, P.; Woody, C.; Schlyer, D.; Pratte, J.F.; Junnarkar, S.; Southekal, S.; Stoll, S.; Schulz, D.; Schiffer, W.; Alexoff, D.; et al. The design and performance of the 2 nd-generation RatCAP awake rat brain PET system. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; Volume 6, pp. 4181–4184. [Google Scholar]
- Kyme, A.Z.; Zhou, V.; Meikle, S.R.; Fulton, R.R. Real-time 3D motion tracking for small animal brain PET. Phys. Med. Biol. 2008, 53, 2651. [Google Scholar] [CrossRef] [PubMed]
- Kyme, A.Z.; Zhou, V.W.; Meikle, S.R.; Baldock, C.; Fulton, R.R. Optimised motion tracking for positron emission tomography studies of brain function in awake rats. PLoS ONE 2011, 6, e21727. [Google Scholar] [CrossRef] [PubMed]
- Spangler-Bickell, M.G.; de Laat, B.; Fulton, R.; Bormans, G.; Nuyts, J. The effect of isoflurane on 18F-FDG uptake in the rat brain: A fully conscious dynamic PET study using motion compensation. EJNMMI Res. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Staelens, S.; Stroobants, S.; Verhaeghe, J. Estimation of and correction for finite motion sampling errors in small animal PET rigid motion correction. Med. Biol. Eng. Comput. 2019, 57, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Torheim, T.; Malinen, E.; Kvaal, K.; Lyng, H.; Indahl, U.G.; Andersen, E.K.; Futsaether, C.M. Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines. IEEE Trans. Med. Imaging 2014, 33, 1648–1656. [Google Scholar] [CrossRef]
- Miranda, A.; Staelens, S.; Stroobants, S.; Verhaeghe, J. Markerless rat head motion tracking using structured light for brain PET imaging of unrestrained awake small animals. Phys. Med. Biol. 2017, 62, 1744. [Google Scholar] [CrossRef]
- Miranda, A.; Staelens, S.; Stroobants, S.; Verhaeghe, J. Fast and accurate rat head motion tracking with point sources for awake brain PET. IEEE Trans. Med. Imaging 2017, 36, 1573–1582. [Google Scholar] [CrossRef]
- Miranda, A.; Glorie, D.; Bertoglio, D.; Vleugels, J.; De Bruyne, G.; Stroobants, S.; Staelens, S.; Verhaeghe, J. Awake 18F-FDG PET imaging of memantine-induced brain activation and test–retest in freely running mice. J. Nucl. Med. 2019, 60, 844–850. [Google Scholar] [CrossRef]
- Arias-Valcayo, F.; Herraiz, J.L.; Galve, P.; Vaquero, J.; Desco, M.; Udías, J.M. Awake preclinical brain PET imaging based on point sources. In Proceedings of the 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, SPIE, Philadelphia, PA, USA, 2–6 June 2019; Volume 11072, pp. 546–550. [Google Scholar]
- Udias, J.; Gutierrez Fernandez, C.; Herraiz, J.; Perez-Benito, D.; Galve, P.; Lopez-Montes, A.; Lopez-Longas, J.; Arco, J.; Desco, M.; Vaquero, J. Performance evaluation of the PET subsystem of the extended FOV SuperArgus 6R preclinical scanner. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney, Australia, 10–17 November 2018; pp. 10–11. [Google Scholar]
- Yavuz, M.; Fessler, J.A. Statistical image reconstruction methods for randoms-precorrected PET scans. Med. Image Anal. 1998, 2, 369–378. [Google Scholar] [CrossRef]
- Heußer, T.; Mann, P.; Rank, C.M.; Schäfer, M.; Dimitrakopoulou-Strauss, A.; Schlemmer, H.P.; Hadaschik, B.A.; Kopka, K.; Bachert, P.; Kachelrieß, M.; et al. Investigation of the halo-artifact in 68Ga-PSMA-11-PET/MRI. PLoS ONE 2017, 12, e0183329. [Google Scholar] [CrossRef]
- Galve, P.; Arias-Valcayo, F.; Montes, A.; Villa-Abaunza, A.; Ibanez, P.; Herraiz, J.; Udías, J. Ultra-fast Monte Carlo PET Reconstructor. In Proceedings of the 16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Stony Brook, NY, USA, 16–21 July 2021; pp. 152–156. [Google Scholar]
- Arias-Valcayo, F.; Galve, P.; Herraiz, J.L.; Desco, M.; Vaquero, J.J.; Udías, J.M. Reconstruction of multi-animal PET acquisitions with anisotropically variant PSF. Biomed. Phys. Eng. Express 2023, 9, 065018. [Google Scholar] [CrossRef]
- Miranda, A.; Kroll, T.; Schweda, V.; Staelens, S.; Verhaeghe, J. Correction of motion tracking errors for PET head rigid motion correction. Phys. Med. Biol. 2023, 68, 175009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias-Valcayo, F.; Galve, P.; Manuel Udías, J.; Vaquero, J.J.; Desco, M.; Herraiz, J.L. Optimizing Point Source Tracking in Awake Rat PET Imaging: A Comprehensive Study of Motion Detection and Best Correction Conditions. Appl. Sci. 2023, 13, 12329. https://doi.org/10.3390/app132212329
Arias-Valcayo F, Galve P, Manuel Udías J, Vaquero JJ, Desco M, Herraiz JL. Optimizing Point Source Tracking in Awake Rat PET Imaging: A Comprehensive Study of Motion Detection and Best Correction Conditions. Applied Sciences. 2023; 13(22):12329. https://doi.org/10.3390/app132212329
Chicago/Turabian StyleArias-Valcayo, Fernando, Pablo Galve, Jose Manuel Udías, Juan José Vaquero, Manuel Desco, and Joaquín L. Herraiz. 2023. "Optimizing Point Source Tracking in Awake Rat PET Imaging: A Comprehensive Study of Motion Detection and Best Correction Conditions" Applied Sciences 13, no. 22: 12329. https://doi.org/10.3390/app132212329
APA StyleArias-Valcayo, F., Galve, P., Manuel Udías, J., Vaquero, J. J., Desco, M., & Herraiz, J. L. (2023). Optimizing Point Source Tracking in Awake Rat PET Imaging: A Comprehensive Study of Motion Detection and Best Correction Conditions. Applied Sciences, 13(22), 12329. https://doi.org/10.3390/app132212329