In Vitro Comparison of Three-Dimensional Cultured Periodontal Ligament Stem Cells Derived from Permanent and Supernumerary Teeth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Morphological Assessment
2.3. Cell Proliferation Assessment
2.4. In Vitro Multilineage Differentiation Assays
2.5. Statistical Analysis
3. Results
3.1. Cell Morphology
3.2. Cell Proliferation
3.3. Cell Differentiation
3.3.1. Osteogenic Differentiation
3.3.2. Chondrogenic Differentiation
3.3.3. Adipogenic Differentiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (dpscs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef]
- Smojver, I.; Katalinić, I.; Bjelica, R.; Gabrić, D.; Matišić, V.; Molnar, V.; Primorac, D. Mesenchymal stem cells based treatment in dental medicine: A narrative review. Int. J. Mol. Sci. 2022, 23, 1662. [Google Scholar] [CrossRef]
- Chen, F.-M.; Jin, Y. Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Eng. Part B Rev. 2010, 16, 219–255. [Google Scholar] [CrossRef]
- Wada, N.; Menicanin, D.; Shi, S.; Bartold, P.M.; Gronthos, S. Immunomodulatory properties of human periodontal ligament stem cells. J. Cell. Physiol. 2009, 219, 667–676. [Google Scholar] [CrossRef]
- Omer, R.S.; Anthonappa, R.P.; King, N.M. Determination of the optimum time for surgical removal of unerupted anterior supernumerary teeth. Pediatr. Dent. 2010, 32, 14–20. [Google Scholar]
- Mallineni, S.K. Supernumerary Teeth: Review of the Literature with Recent Updates; Conference Papers in Science; Hindawi: London, UK, 2014. [Google Scholar]
- Anthonappa, R.; King, N.; Rabie, A. Aetiology of supernumerary teeth: A literature review. Eur. Arch. Paediatr. Dent. 2013, 14, 279–288. [Google Scholar] [CrossRef]
- Duval, K.; Grover, H.; Han, L.H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling physiological events in 2d vs. 3d cell culture. Physiology 2017, 32, 266–277. [Google Scholar] [CrossRef]
- Habanjar, O.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. 3d cell culture systems: Tumor application, advantages, and disadvantages. Int. J. Mol. Sci. 2021, 22, 12200. [Google Scholar] [CrossRef]
- Ravi, M.; Paramesh, V.; Kaviya, S.R.; Anuradha, E.; Solomon, F.D. 3d cell culture systems: Advantages and applications. J. Cell. Physiol. 2015, 230, 16–26. [Google Scholar] [CrossRef]
- Wang, H.; Brown, P.C.; Chow, E.C.Y.; Ewart, L.; Ferguson, S.S.; Fitzpatrick, S.; Freedman, B.S.; Guo, G.L.; Hedrich, W.; Heyward, S.; et al. 3d cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin. Transl. Sci. 2021, 14, 1659–1680. [Google Scholar] [CrossRef]
- Tanaka, H. Modeling and analysis of disease microenvironments with 3d cell culture technology. Yakugaku Zasshi 2021, 141, 647–653. [Google Scholar] [CrossRef]
- Itoh, Y.; Sasaki, J.I.; Hashimoto, M.; Katata, C.; Hayashi, M.; Imazato, S. Pulp regeneration by 3-dimensional dental pulp stem cell constructs. J. Dent. Res. 2018, 97, 1137–1143. [Google Scholar] [CrossRef]
- Visakan, G.; Su, J.; Moradian-Oldak, J. Ameloblastin promotes polarization of ameloblast cell lines in a 3-d cell culture system. Matrix Biol. 2022, 105, 72–86. [Google Scholar] [CrossRef]
- Basso, F.G.; Soares, D.G.; Pansani, T.N.; Cardoso, L.M.; Scheffel, D.L.; de Souza Costa, C.A.; Hebling, J. Proliferation, migration, and expression of oral-mucosal-healing-related genes by oral fibroblasts receiving low-level laser therapy after inflammatory cytokines challenge. Lasers Surg. Med. 2016, 48, 1006–1014. [Google Scholar] [CrossRef]
- Brezulier, D.; Pellen-Mussi, P.; Tricot-Doleux, S.; Novella, A.; Sorel, O.; Jeanne, S. Development of a 3d human osteoblast cell culture model for studying mechanobiology in orthodontics. Eur. J. Orthod. 2020, 42, 387–395. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, E.; Shang, Z. 3d co-culture of cancer-associated fibroblast with oral cancer organoids. J. Dent. Res. 2021, 100, 201–208. [Google Scholar] [CrossRef]
- Shehzad, A.; Ravinayagam, V.; AlRumaih, H.; Aljafary, M.; Almohazey, D.; Almofty, S.; Al-Rashid, N.A.; Al-Suhaimi, E.A. Application of three-dimensional (3d) tumor cell culture systems and mechanism of drug resistance. Curr. Pharm. Des. 2019, 25, 3599–3607. [Google Scholar] [CrossRef]
- Mountcastle, S.E.; Cox, S.C.; Sammons, R.L.; Jabbari, S.; Shelton, R.M.; Kuehne, S.A. A review of co-culture models to study the oral microenvironment and disease. J. Oral Microbiol. 2020, 12, 1773122. [Google Scholar] [CrossRef]
- Charbonneau, A.M.; Tran, S.D. 3d cell culture of human salivary glands using nature-inspired functional biomaterials: The egg yolk plasma and egg white. Materials 2020, 13, 4807. [Google Scholar] [CrossRef]
- Baena, A.R.; Casasco, A.; Monti, M. Hypes and hopes of stem cell therapies in dentistry: A review. Stem. Cell. Rev. Rep. 2022, 18, 1294–1308. [Google Scholar] [CrossRef]
- Ryu, N.-E.; Lee, S.-H.; Park, H. Spheroid culture system methods and applications for mesenchymal stem cells. Cells 2019, 8, 1620. [Google Scholar] [CrossRef]
- Klotz, B.J.; Gawlitta, D.; Rosenberg, A.J.; Malda, J.; Melchels, F.P. Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends Biotechnol. 2016, 34, 394–407. [Google Scholar] [CrossRef]
- Malhão, F.; Macedo, A.C.; Ramos, A.A.; Rocha, E. Morphometrical, morphological, and immunocytochemical characterization of a tool for cytotoxicity research: 3d cultures of breast cell lines grown in ultra-low attachment plates. Toxics 2022, 10, 415. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, W.; Wang, J.; Zhao, M.; Shen, K.; Jia, Y.; Li, Y.; Zhang, J.; Cai, W.; Xiao, D. A novel 3d culture model of human ascs reduces cell death in spheroid cores and maintains inner cell proliferation compared with a nonadherent 3d culture. Front. Cell Dev. Biol. 2021, 9, 737275. [Google Scholar] [CrossRef]
- Zhu, W.; Liang, M. Periodontal ligament stem cells: Current status, concerns, and future prospects. Stem Cells Int. 2015, 2015, 972313. [Google Scholar] [CrossRef]
- Ji, K.; Liu, Y.; Lu, W.; Yang, F.; Yu, J.; Wang, X.; Ma, Q.; Yang, Z.; Wen, L.; Xuan, K. Periodontal tissue engineering with stem cells from the periodontal ligament of human retained deciduous teeth. J. Periodontal. Res. 2013, 48, 105–116. [Google Scholar] [CrossRef]
- Silvério, K.G.; Rodrigues, T.L.; Coletta, R.D.; Benevides, L.; Da Silva, J.S.; Casati, M.Z.; Sallum, E.A.; Nociti, F.H., Jr. Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J. Periodontol. 2010, 81, 1207–1215. [Google Scholar] [CrossRef]
- Ronay, V.; Belibasakis, G.N.; Attin, T.; Schmidlin, P.R.; Bostanci, N. Expression of embryonic stem cell markers and osteogenic differentiation potential in cells derived from periodontal granulation tissue. Cell Biol. Int. 2014, 38, 179–186. [Google Scholar] [CrossRef]
- Park, J.H.; Song, J.S.; Kim, S.; Kim, S.O.; Choi, B.J.; Park, K.H.; Jung, H.S.; Lee, J.H. Characteristics of stem cells derived from the periodontal ligament of supernumerary teeth. Tissue Eng. Regen. Med. 2011, 8, 123–131. [Google Scholar]
- Garvey, M.T.; Barry, H.J.; Blake, M. Supernumerary teeth--an overview of classification, diagnosis and management. J. Can. Dent. Assoc. 1999, 65, 612–616. [Google Scholar]
- Agata, H.; Kagami, H.; Watanabe, N.; Ueda, M. Effect of ischemic culture conditions on the survival and differentiation of porcine dental pulp-derived cells. Differentiation 2008, 76, 981–993. [Google Scholar] [CrossRef]
- Mohyeldin, A.; Garzón-Muvdi, T.; Quiñones-Hinojosa, A. Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell 2010, 7, 150–161. [Google Scholar] [CrossRef]
- Feng, F.; Akiyama, K.; Liu, Y.; Yamaza, T.; Wang, T.M.; Chen, J.H.; Wang, B.B.; Huang, G.T.; Wang, S.; Shi, S. Utility of pdl progenitors for in vivo tissue regeneration: A report of 3 cases. Oral Dis. 2010, 16, 20–28. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, X.; Song, W.; Pan, T.; Wang, H.; Ning, T.; Wei, Q.; Xu, H.H.K.; Wu, B.; Ma, D. Effects of 3-dimensional bioprinting alginate/gelatin hydrogel scaffold extract on proliferation and differentiation of human dental pulp stem cells. J. Endod. 2019, 45, 706–715. [Google Scholar] [CrossRef]
- Sart, S.; Tsai, A.C.; Li, Y.; Ma, T. Three-dimensional aggregates of mesenchymal stem cells: Cellular mechanisms, biological properties, and applications. Tissue Eng. Part B Rev. 2014, 20, 365–380. [Google Scholar] [CrossRef]
- Jeong, Y.Y.; Kim, M.S.; Lee, K.E.; Nam, O.H.; Jang, J.-H.; Choi, S.-C.; Lee, H.-S. In vitro characterization of periodontal ligament stem cells derived from supernumerary teeth in three-dimensional culture method. Appl. Sci. 2021, 11, 6040. [Google Scholar] [CrossRef]
- Lu, X.; Liu, S.F.; Wang, H.H.; Yu, F.; Liu, J.J.; Zhao, Y.M.; Zhao, S.L. A biological study of supernumerary teeth derived dental pulp stem cells based on rna-seq analysis. Int. Endod. J. 2019, 52, 819–828. [Google Scholar] [CrossRef]
- Coura, G.; Garcez, R.; De Aguiar, C.M.; Alvarez-Silva, M.; Magini, R.; Trentin, A. Human periodontal ligament: A niche of neural crest stem cells. J. Periodontal Res. 2008, 43, 531–536. [Google Scholar] [CrossRef]
- Hakki, S.S.; Bozkurt, B.; Hakki, E.E.; Kayis, S.A.; Turac, G.; Yilmaz, I.; Karaoz, E. Bone morphogenetic protein-2,-6, and-7 differently regulate osteogenic differentiation of human periodontal ligament stem cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 119–130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Lee, K.E.; Chae, Y.K.; Nam, O.H.; Kim, M.S.; Jang, J.-H.; Choi, S.C.; Lee, H.-S. In Vitro Comparison of Three-Dimensional Cultured Periodontal Ligament Stem Cells Derived from Permanent and Supernumerary Teeth. Appl. Sci. 2023, 13, 12440. https://doi.org/10.3390/app132212440
Kim H, Lee KE, Chae YK, Nam OH, Kim MS, Jang J-H, Choi SC, Lee H-S. In Vitro Comparison of Three-Dimensional Cultured Periodontal Ligament Stem Cells Derived from Permanent and Supernumerary Teeth. Applied Sciences. 2023; 13(22):12440. https://doi.org/10.3390/app132212440
Chicago/Turabian StyleKim, Heejin, Ko Eun Lee, Yong Kwon Chae, Ok Hyung Nam, Mi Sun Kim, Ji-Hyun Jang, Sung Chul Choi, and Hyo-Seol Lee. 2023. "In Vitro Comparison of Three-Dimensional Cultured Periodontal Ligament Stem Cells Derived from Permanent and Supernumerary Teeth" Applied Sciences 13, no. 22: 12440. https://doi.org/10.3390/app132212440
APA StyleKim, H., Lee, K. E., Chae, Y. K., Nam, O. H., Kim, M. S., Jang, J. -H., Choi, S. C., & Lee, H. -S. (2023). In Vitro Comparison of Three-Dimensional Cultured Periodontal Ligament Stem Cells Derived from Permanent and Supernumerary Teeth. Applied Sciences, 13(22), 12440. https://doi.org/10.3390/app132212440