Productivity Assessment of the Yolo V5 Model in Detecting Road Surface Damages
Abstract
:1. Introduction
2. Literature Review of Road Damage Detection
3. Presenting the Yolo V5 Network Architecture Model and Introducing Other Detection Models
3.1. Overview of Road Surface Damage Image Detection Models
3.1.1. Two Object Detection Models Are Faster RCNN and SSD in the Latest Object Detection in Images Technology Today
3.1.2. SSD Model (Single Shot Multi-Box Detection) (One-Stage Model)
3.2. Basic Architectures of Deep Learning
3.2.1. MobileNet
3.2.2. Inception
3.2.3. ResNet
3.2.4. Inception ResNet
3.3. Yolo Introduction to Yolo Network Architecture Model
3.3.1. Introduction to Yolo (Yolo V5)
3.3.2. Yolo V5’s Structure
4. The Working Process of Yolo V5 in RTI IMS Software Development to Automatically Detect Road Surface Damage
4.1. Application of Yolo V5 Model to Develop RTI IMS Software to Automatically Detect Road Surface Damage
4.2. Training and Detection Process of Yolo V5 in RTI IMS Software
4.2.1. YOLO V5’s Object Training Algorithm
4.2.2. YOLO V5’s Object Training Process in RTI IMS Software
5. Performance Evaluation of Object Detection Models
5.1. Performance Evaluation Criteria of Detection Models
- TP (True Positive): The model correctly identifies it as a pothole, and the image indeed contains a pothole.
- FP (False Positive): The model incorrectly identifies it as a pothole, but the actual label is not a pothole (could be a license plate, for example).
- TN (True Negative): The model correctly identifies it as not a pothole, and the image truly does not contain a pothole (car, manhole cover, traffic light, etc.).
- FN (False Negative): The model incorrectly identifies it as not a pothole, but in reality, it is a pothole.
5.2. Data Collection and Classification
5.3. Performance Evaluation Using a Single Data Source
5.3.1. Model Performance Based on Rising mAP and AR Values
5.3.2. Model Processing Speed
5.3.3. Results Obtained on Actual Testing by Webcam Detecting RTI IMS
6. Results and Discussion
6.1. Results
6.2. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koch, C.; Jog, G.M.; Brilakis, I. Automated pothole distress assessment using asphalt road surface video data. J. Comput. Civ. Eng. 2013, 27, 370–378. [Google Scholar] [CrossRef]
- Cao, M.T.; Tran, Q.V.; Nguyen, N.M.; Chang, K.T. Survey on performance of deep learning models for detecting road damages using multiple dashcam image resources. Adv. Eng. Inform. 2020, 46, 101182. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Hahn, M. Wavelet-morphology based detection of incipient linear cracks in asphalt pavements from RGB camera imagery and classification using circular Radon transform. Adv. Eng. Inform. 2016, 30, 481–499. [Google Scholar] [CrossRef]
- Gavilán, M.; Balcones, D.; Marcos, O.; Llorca, D.F.; Sotelo, M.A.; Parra, I.; Ocaña, M.; Aliseda, P.; Yarza, P.; Amírola, A. Adaptive road crack detection system by pavement classification. Sensors 2011, 11, 9628–9657. [Google Scholar] [CrossRef]
- He, Y.; Jin, Z.; Zhang, J.; Teng, S.; Chen, G.; Sun, X.; Cui, F. Pavement Surface Defect Detection Using Mask Region-Based Convolutional Neural Networks and Transfer Learning. Appl. Sci. 2022, 12, 7364. [Google Scholar] [CrossRef]
- Outay, F.; Mengash, H.A.; Adnan, M. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transp. Res. Part A Policy Pract. 2020, 141, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, F. Detecting road damage by using gyroscope sensor. ICIC Express Lett. 2018, 12, 1089–1098. [Google Scholar] [CrossRef]
- Harikrishnan, P.; Gopi, V.P. Vehicle vibration signal processing for road surface monitoring. IEEE Sens. J. 2017, 17, 5192–5197. [Google Scholar] [CrossRef]
- Zhu, C.; Pastor, G.; Xiao, Y.; Ylajaaski, A. Vehicular fog computing for video crowdsourcing: Applications, feasibility, and challenges. IEEE Commun. Mag. 2018, 56, 58–63. [Google Scholar] [CrossRef]
- Zakeri, H.; Nejad, F.M.; Fahimifar, A. Image based techniques for crack detection, classification and quantification in asphalt pavement: A review. Arch. Comput. Methods Eng. 2016, 24, 935–977. [Google Scholar] [CrossRef]
- Kamaliardakani, M.; Sun, L.; Ardakani, M.K. Sealed-crack detection algorithm using heuristic thresholding approach. J. Comput. Civ. Eng. 2014, 30, 04014110. [Google Scholar] [CrossRef]
- Oliveira, H.; Correia, P.L. Automatic road crack segmentation using entropy and image dynamic thresholding. In Proceedings of the 2009 17th European Signal Processing Conference, Glasgow, UK, 24–28 August 2009; IEEE: New York, NY, USA, 2009; pp. 622–626. [Google Scholar]
- Chow, J.K.; Su, Z.; Wu, J.; Tan, P.S.; Mao, X.; Wang, Y.H. Anomaly detection of defects on concrete structures with the convolutional autoencoder. Adv. Eng. Inf. 2020, 45, 101105. [Google Scholar] [CrossRef]
- Singh, D.; Singh, M. Internet of vehicles for smart and safe driving. In Proceedings of the International Conference on Connected Vehicles and Expo (ICCVE), Shenzhen, China, 19–23 October 2015; IEEE: New York, NY, USA, 2015; pp. 328–329. [Google Scholar] [CrossRef]
- Shim, S.; Kim, J.; Lee, S.W.; Cho, G.C. Road surface damage detection based on hierarchical architecture using lightweight auto-encoder network. Autom. Constr. 2021, 130, 103833. [Google Scholar] [CrossRef]
- Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road damage detection using deep neural networks with images captured through a smartphone. arXiv 2018, arXiv:1801.09454. [Google Scholar]
- Arya, D.; Maeda, H.; Ghosh, S.K.; Toshniwal, D.; Sekimoto, Y. RDD2020: An annotated image dataset for automatic road damage detection using deep learning. Data Brief 2021, 36, 107133. [Google Scholar] [CrossRef]
- Sinharay, A.; Bilal, S.; Pal, A.; Sinha, A. Low computational approach for road condition monitoring using smartphones. In Proceedings of the Computer Society of India (CSI) Annual Convention, Theme: Intelligent Infrastructure, Visakhapatnam, India, 13–15 December 2013; pp. 13–15. [Google Scholar]
- Fang, W.; Luo, H.; Xu, S.; Love, P.E.; Lu, Z.; Ye, C. Automated text classification of near misses from safety reports: An improved deep learning approach. Adv. Eng. Inform. 2020, 44, 101060. [Google Scholar] [CrossRef]
- Harris, D.K.; Alipour, M.; Acton, S.T.; Messeri, L.R.; Vaccari, A.; Barnes, L.E. The citizen engineer: Urban infrastructure monitoring via crowd-sourced data analytics. In Proceedings of the Structures Congress 2017, Denver, CO, USA, 6–8 April 2017; pp. 495–510. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhang, Y.; Guo, Z.; Wu, J.; Tian, Y.; Tang, H.; Guo, X. Real-time vehicle detection based on improved yolo v5. Sustainability 2022, 14, 12274. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar]
- Malygin, I.; Komashinsky, V.; Tsyganov, V. International experience and multimodal intelligent transportation system of Russia. In Proceedings of the 2017 Tenth International Conference Management of Large-Scale System Development (MLSD), Moscow, Russia, 2–4 October 2017; pp. 1–5. [Google Scholar]
- Cumbajin, E.; Rodrigues, N.; Costa, P.; Miragaia, R.; Frazão, L.; Costa, N.; Fernández-Caballero, A.; Carneiro, J.; Buruberri, L.H.; Pereira, A. A Systematic Review on Deep Learning with CNNs Applied to Surface Defect Detection. J. Imaging 2023, 9, 193. [Google Scholar] [CrossRef]
- Hatır, M.E.; İnce, İ.; Korkanç, M. Intelligent detection of deterioration in cultural stone heritage. J. Build. Eng. 2021, 44, 102690. [Google Scholar] [CrossRef]
- Kyriakou, C.; Christodoulou, S.E.; Dimitriou, L. Smartphone-based pothole detection utilizing artificial neural networks. J. Infrastruct. Syst. 2019, 25, 04019019. [Google Scholar] [CrossRef]
- Jo, Y.; Ryu, S. Pothole detection system using a black-box camera. Sensors 2015, 15, 29316–29331. [Google Scholar] [CrossRef]
- Chun, C.; Ryu, S.-K. Road surface damage detection using fully convolutional neural networks and semi-supervised learning. Sensors 2019, 19, 5501. [Google Scholar] [CrossRef] [PubMed]
- Kalfarisi, R.; Wu, Z.Y.; Soh, K. Crack detection and segmentation using deep learning with 3D reality mesh model for quantitative assessment and integrated visualization. J. Comput. Civ. Eng. 2020, 34, 04020010. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, K.C.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 805–819. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Socaciu, C. Bioeconomy and green economy: European strategies, action plans and impact on life quality. Bull. UASVM Food Sci. Technol. 2014, 71, 1–10. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Hoang, N.-D.; Nguyen, Q.-L.; Tien Bui, D. Image processing–based classification of asphalt pavement cracks using support vector machine optimized by artificial bee colony. J. Comput. Civ. Eng. 2018, 32, 04018037. [Google Scholar] [CrossRef]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7310–7311. [Google Scholar]
- Sun, C.; Luo, Y.; Li, J. Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China. J. Clean. Prod. 2018, 172, 488–496. [Google Scholar] [CrossRef]
- Tomiyama, K.; Kawamura, A.; Fujita, S.; Ishida, T. An effective surface inspection method of urban roads according to the pavement management situation of local governments. J. Jpn. Soc. Civ. Eng. Ser. F3 (Civ. Eng. Inform.) 2013, 69, I-54–I-62. [Google Scholar]
- Zhankaziev, S. Current trends of road-traffic infrastructure development. Transp. Res. Procedia 2017, 20, 731–739. [Google Scholar] [CrossRef]
- Hatır, E.; Korkanç, M.; Schachner, A.; Ince, I. The deep learning method applied to the detection and mapping of stone deterioration in open-air sanctuaries of the Hittite period in Anatolia. J. Cult. Herit. 2021, 51, 37–49. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; pp. 740–755, Proceedings, Part V 13, 2014. [Google Scholar]
- Azam, A.; Alshehri, A.H.; Alharthai, M.; El-Banna, M.M.; Yosri, A.M.; Beshr, A.A. Applications of Terrestrial Laser Scanner in Detecting Pavement Surface Defects. Processes 2023, 11, 1370. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Yu, Y.; Chapman, M.; Wang, H.; Wang, C.; Zhai, R. Iterative tensor voting for road surface crack extraction using mobile laser scanning data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1527–1537. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.; Cai, H. Automatic road surface-crack detection and segmentation based on steerable matched filtering and an active contour model. J. Comput. Civ. Eng. 2017, 31, 04017045. [Google Scholar] [CrossRef]
Damage Type | Instance Number | Details | |
---|---|---|---|
Type I | Lateral crack | 1378 | Wheel mark part Construction joint part |
Type II | Longitudinal crack | 6557 | Equal interval Construction joint part |
Type III | Alligator crack | 2541 | Fatigue causes Unstable asphalt bases |
Type IV | Corruption | 409 (original) 730 (Added) | Rutting, bump pothole, separation |
Type V | Blurring | 4550 | Crosswalk blur While line blur |
Detection Systems | mAP (%) | |||||
---|---|---|---|---|---|---|
Small | Medium | Large | @.50IoU | @.75IoU | Average | |
Yolo V5 | 80.26 | 87.20 | 89.50 | 80.19 | 38.90 | 40.72 |
SSD MobileNet-V1 | 0 | 5.32 | 18.45 | 35.81 | 13.2 | 16.47 |
SSD MobileNet-V2 | 0 | 6.3 | 21.1 | 38.7 | 16.34 | 18.81 |
SSD Inception-V2 | 0 | 6.6 | 22.25 | 40.54 | 16.57 | 19.45 |
SSD Lite-MobiNet-V2 | 0 | 6.57 | 18.93 | 36.58 | 14.43 | 17.1 |
Faster R-CNN Inception-V2 | 3.97 | 12.08 | 30.17 | 51.86 | 24.18 | 26.45 |
Faster R-CNN ResNet-50 | 10.23 | 10.56 | 30.25 | 51.25 | 23.73 | 26.08 |
Faster R-CNN ResNet-101 | 4.61 | 11.73 | 31.06 | 52.85 | 24.15 | 27.35 |
Faster R-CNN Inception-Resnet-V2 | 8.07 | 14.14 | 31.26 | 54.75 | 24.94 | 27.66 |
Detection Systems | AR@1 | AR@10 | mAP (%) | |||
---|---|---|---|---|---|---|
Small | Medium | Large | Average | |||
YOLO V5 | 73.20% | 75.61% | 75.50% | 80.21% | 83.87% | 74.52% |
SSD MobileNet-V1 | 22.82% | 34.90% | 0.00% | 20.24% | 42.30% | 37.31% |
SSD MobileNet-V2 | 25.04% | 37.81% | 0.00% | 23.56% | 44.17% | 40.51% |
SSD Inception-V2 | 26.01% | 38.66% | 0.00% | 23.40% | 46.61% | 41.44% |
SSD Lite-MobiNet-V2 | 23.29% | 35.82% | 0.00% | 26.25% | 41.15% | 38.91% |
Faster R-CNN Inception-V2 | 33.61% | 49.82% | 16.00% | 41.10% | 58.05% | 53.06% |
Faster R-CNN ResNet-50 | 32.88% | 47.98% | 11.00% | 36.62% | 57.15% | 51.33% |
Faster R-CNN ResNet-101 | 33.78% | 48.82% | 19.00% | 41.15% | 56.99% | 52.06% |
Faster R-CNN Inception-Resnet-V2 | 34.41% | 49.27% | 23.67% | 38.14% | 56.73% | 51.45% |
Damage Type | Faster-RCNN | SSD | Yolo V5 | ||||||
---|---|---|---|---|---|---|---|---|---|
Resnet 50 | Resnet 101 | Inception V2 | Inception Resnet V2 | Resnet 50 | Resnet 101 | Inception V2 | Inception Resnet V2 | ||
Type I | 68.2 | 68.5 | 71.3 | 71.6 | 49.8 | 49.8 | 50.8 | 53.5 | 79.76 |
Type II | 34.6 | 41.4 | 37.6 | 45.3 | 11.0 | 14.3 | 17.2 | 9.5 | 75.23 |
Type III | 67.4 | 69.0 | 62.8 | 70.8 | 50.4 | 55.3 | 55.0 | 47.4 | 75.85 |
Type IV | 12.2 | 10.8 | 11.1 | 11.6 | 5.5 | 5.4 | 12.0 | 5.7 | 70.65 |
Type V | 73.8 | 74.6 | 76.6 | 74.5 | 62.4 | 68.7 | 67.7 | 66.7 | 77.04 |
Model | Detection Model | Parameters | Test | ||
---|---|---|---|---|---|
600 × 600 | 1920 × 1080 | 3068 × 2760 | |||
Model 1 | SSD MobileNet-V1 | 5.60 M | 2.10 s | 3.70 s | 10.50 s |
Model 2 | SSD MobileNet-V2 | 4.70 M | 2.0 s | 3.80 s | 10.30 s |
Model 3 | SSD Inception V2 | 3.20 M | 3.40 s | 5.40 s | 11.60 s |
Model 4 | Faster R-CNN Inception-Resnet V2 | 59.4 M | 17.8 s | 21.5 s | 24.3 s |
Model 5 | SSD Lite-MobileNet V2 | 13.70 M | 1.80 s | 3.90 s | 9.80 s |
Model 6 | Faster R-CNN Inception V2 | 43.10 M | 4.80 s | 6.30 s | 11.60 s |
Model 7 | Faster R-CNN Resnet50 | 43.30 M | 7.10 s | 9.80 s | 14.60 s |
Model 8 | Faster R-CNN Resnet101 | 62.40 M | 10.80 s | 13.90 s | 18.00 s |
Model 9 | Yolo V5 | 7.2 M | 0.5 s | 1.2 s | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, S.V.H.; Nguyen, K.V.T. Productivity Assessment of the Yolo V5 Model in Detecting Road Surface Damages. Appl. Sci. 2023, 13, 12445. https://doi.org/10.3390/app132212445
Pham SVH, Nguyen KVT. Productivity Assessment of the Yolo V5 Model in Detecting Road Surface Damages. Applied Sciences. 2023; 13(22):12445. https://doi.org/10.3390/app132212445
Chicago/Turabian StylePham, Son Vu Hong, and Khoi Van Tien Nguyen. 2023. "Productivity Assessment of the Yolo V5 Model in Detecting Road Surface Damages" Applied Sciences 13, no. 22: 12445. https://doi.org/10.3390/app132212445
APA StylePham, S. V. H., & Nguyen, K. V. T. (2023). Productivity Assessment of the Yolo V5 Model in Detecting Road Surface Damages. Applied Sciences, 13(22), 12445. https://doi.org/10.3390/app132212445