Dextran of Diverse Molecular-Configurations Used as a Blood-Plasma Substitute, Drug-Delivery Vehicle and Food Additive Biosynthesized by Leuconostoc, Lactobacillus and Weissella
Abstract
:1. Introduction
2. Description of Dextran Polysaccharide
Clinical Derivatives from Dextran
3. Functions of Dextran and Its Derivatives
3.1. Dextran Preparations Used as a Blood Plasma Substitute
3.2. Dextran a Vehicle and Carrier for Drug Delivery
3.3. Applications of Dextrans in Products of Food Industry
4. Biosynthesis of Dextran in Optimized Microbial Processes
4.1. Bioagents Used in the Production Process
4.2. Dextran Synthesized by Specific Strains of Leuconostoc Species
4.3. Dextran Synthesized by Specific Strains of Lactobacillus Species
4.4. Dextran Synthesized by Specific Strains of a Few Weissella Species
5. Conclusions
6. Future Perspectives and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahiya, D.; Nigam, P.S. The Gut Microbiota Influenced by the Intake of Probiotics and Functional Foods with Prebiotics Can Sustain Wellness and Alleviate Certain Ailments like Gut-Inflammation and Colon-Cancer. Microorganisms 2022, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Nigam, P.S. Biotherapy Using Probiotics as Therapeutic Agents to Restore the Gut Microbiota to Relieve Gastrointestinal Tract Inflammation, IBD, IBS and Prevent Induction of Cancer. Int. J. Mol. Sci. 2023, 24, 5748. [Google Scholar] [CrossRef] [PubMed]
- Ganatsios, V.; Nigam, P.S.; Plessas, S.; Terpou, A. Kefir as a Functional Beverage Gaining Momentum towards Its Health Promoting Attributes. Beverages 2021, 7, 48. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Therapeutic and Dietary Support for Gastrointestinal Tract Using Kefir as a Nutraceutical Beverage: Dairy-Milk-Based or Plant-Sourced Kefir Probiotic Products for Vegan and Lactose-Intolerant Populations. Fermentation 2023, 9, 388. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Nutraceuticals Prepared with Specific Strains of Probiotics for Supplementing Gut Microbiota in Hosts Allergic to Certain Foods or Their Additives. Nutrients 2023, 15, 2979. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Use of Characterized Microorganisms in Fermentation of Non-Dairy-Based Substrates to Produce Probiotic Food for Gut-Health and Nutrition. Ferment. Sect. Ferment. Food Beverages 2023, 9, 1. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Nutrition and Health through the Use of Probiotic Strains in Fermentation to Produce Non-Dairy Functional Beverage Products Supporting Gut Microbiota. Foods 2022, 11, 2760. [Google Scholar] [CrossRef]
- Manjanna, K.; Shivakumar, B.; Pramodkumar, T. Natural exopolysaccharides as novel excipients in drug delivery: A review. Arch. Appl. Sci. Res. 2009, 1, 230–253. [Google Scholar]
- Shingel, K.I. Determination of structural peculiarities of dextran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr. Res. 2002, 337, 1445–1451. [Google Scholar] [CrossRef]
- Deng, W.; Li, J.; Yao, P.; He, F.; Huang, C. Green preparation process, characterization and antitumor effects of doxorubicin–BSA–dextran nanoparticles. Macromol. Biosci. 2010, 10, 1224–1234. [Google Scholar] [CrossRef]
- Togo, A.; Enomoto, Y.; Takemura, A.; Iwata, T. Synthesis and characterization of dextran ester derivatives and their adhesive properties. J. Wood Sci. 2019, 65, 66. [Google Scholar] [CrossRef]
- Dhaneshwar, S.S.; Mini, K.; Gairola, N.; Kadam, S. Dextran: A promising macromolecular drug carrier. Indian J. Pharm. Sci. 2006, 68, 705. [Google Scholar] [CrossRef]
- Varshosaz, J. Dextran conjugates in drug delivery. Expert Opin. Drug Deliv. 2012, 9, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Li, R.-h.; Zeng, T.; Wu, M.; Zhang, H.-b.; Hu, X.-q. Effects of esterification on the structural, physicochemical, and flocculation properties of dextran. Carbohydr. Polym. 2017, 174, 1129–1137. [Google Scholar] [CrossRef]
- Liebert, T.; Wotschadlo, J.; Laudeley, P.; Heinze, T. Meltable dextran esters as biocompatible and functional coating materials. Biomacromolecules 2011, 12, 3107–3113. [Google Scholar] [CrossRef]
- Jin, R.; Guo, X.; Dong, L.; Xie, E.; Cao, A. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy. Colloids Surf. B Biointerfaces 2017, 158, 47–56. [Google Scholar] [CrossRef]
- Gruber, U.F. Dextran and the prevention of postoperative thromboembolic complications. Surg. Clin. North Am. 1975, 55, 679–696. [Google Scholar] [CrossRef]
- Klotz, U.; Kroemer, H. Clinical pharmacokinetic considerations in the use of plasma expanders. Clin. Pharmacokinet. 1987, 12, 123–135. [Google Scholar] [CrossRef]
- Zinderman, C.E.; Landow, L.; Wise, R.P. Anaphylactoid reactions to dextran 40 and 70: Reports to the United States Food and Drug Administration, 1969 to 2004. J. Vasc. Surg. 2006, 43, 1004–1009. [Google Scholar] [CrossRef]
- Bunn, F.; Trivedi, D. Colloid solutions for fluid resuscitation. Cochrane Database Syst. Rev. 2012, 2012, CD001319. [Google Scholar] [CrossRef]
- Kam, P.C.A.; Liou, J.P.C.; Yang, K.X.F. In vitro evaluation of the effect of haemodilution with dextran 40 on coagulation profile as meas-ured by thromboelastometry and multiple electrode aggregometry. Anaesth Intensive Care 2017, 45, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Bentzer, P.; Broman, M.; Kander, T. Effect of dextran-70 on outcome in severe sepsis; a propensity-score matching study. Scand. J. Trauma, Resusc. Emerg. Med. 2017, 25, 65. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.M. Chapter 38—Albumin and Related Products. In Morayma Reyes Gil, Transfusion Medicine and Hemostasis, 3rd ed.; Beth, H., Christopher, S., Hillyer, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 229–233. ISBN 9780128137260. [Google Scholar] [CrossRef]
- Warden, G.D. Chapter 9—Fluid resuscitation and early management. In Total Burn Care, 4th ed.; Herndon, D.N., Saunders, W.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 115–124.e3. ISBN 9781437727869. [Google Scholar] [CrossRef]
- Hu, Q.; Lu, Y.; Luo, Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym. 2021, 264, 117999. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Terpou, A.; Dasenaki, M.; Nigam, P.S. Current status and future prospects of bioactive molecules delivered through sustainable encapsulation techniques for food fortification. Sustain. Food Technol. R. Soc. Chem. 2023, 1, 500–510. [Google Scholar] [CrossRef]
- Qin, Y.; Xiong, L.; Li, M.; Liu, J.; Wu, H.; Qiu, H.; Mu, H.; Xu, X.; Sun, Q. Preparation of bioactive polysaccharide nanoparticles with enhanced radical scavenging activity and antimicrobial activity. J. Agric. Food Chem. 2018, 66, 4373–4383. [Google Scholar] [CrossRef]
- Luo, Y. Food colloids binary and ternary complexes: Innovations and discoveries. Colloids Surf. B Biointerfaces 2020, 196, 111309. [Google Scholar] [CrossRef]
- Fan, Y.; Yi, J.; Zhang, Y.; Wen, Z.; Zhao, L. Physicochemical stability and in vitro bioaccessibility of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. Food Hydrocoll. 2017, 63, 256–264. [Google Scholar] [CrossRef]
- Mukwaya, V.; Wang, C.; Dou, H. Saccharide-based nanocarriers for targeted therapeutic and diagnostic applications. Polym. Int. 2019, 68, 306–319. [Google Scholar] [CrossRef]
- Anirudhan, T.S. Dextran based nanosized carrier for the controlled and targeted delivery of curcumin to liver cancer cells. Int. J. Biol. Macromol. 2016, 88, 222–235. [Google Scholar] [CrossRef]
- Cadée, J.A.; Van Luyn, M.J.A.; Brouwer, L.A.; Plantinga, J.A.; Van Wachem, P.B.; De Groot, C.J.; Den Otter, W.; Hennink, W.E. In vivo biocompatibility of dextran-based hydrogels. J. Biomed. Mater. Res. 2000, 50, 397–404. [Google Scholar] [CrossRef]
- Draye, J.-P.; Delaey, B.; Van de Voorde, A.; Bulcke, A.V.D.; De Reu, B.; Schacht, E. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 1998, 19, 1677–1687. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.K.; Wang, Y.-Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009, 61, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Ensign, L.M.; Schneider, C.; Suk, J.S.; Cone, R.; Hanes, J. Mucus penetrating nanoparticles: Biophysical tool and method of drug and gene delivery. Adv. Mater. 2012, 24, 3887–3894. [Google Scholar] [CrossRef]
- Shan, W.; Zhu, X.; Liu, M.; Li, L.; Zhong, J.; Sun, W.; Zhang, Z.; Huang, Y. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 2015, 9, 2345–2356. [Google Scholar] [CrossRef]
- Kadota, K.; Yanagawa, Y.; Tachikawa, T.; Deki, Y.; Uchiyama, H.; Shirakawa, Y.; Tozuka, Y. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin. Int. J. Pharm. 2019, 555, 280–290. [Google Scholar] [CrossRef]
- Awasthi, R.; Roseblade, A.; Hansbro, P.M.; Rathbone, M.J.; Dua, K.; Bebawy, M. Nanoparticles in cancer treatment: Opportunities and obstacles. Curr. Drug Targets 2018, 19, 1696–1709. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chem. 2010, 21, 797–802. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, H.; Dou, H.J.; Fan, X.; Fei, X.C.; Wang, L.; Cheng, S.; Janin, A.; Wang, L.; Zhao, W.L. Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity. Int. J. Nanomed. 2018, 13, 5673. [Google Scholar] [CrossRef]
- Liu, L.; Bao, Y.; Zhang, Y.; Xiao, C.; Chen, L. Acid-responsive dextran-based therapeutic nanoplatforms for photodynamic-chemotherapy against multidrug resistance. Int. J. Biol. Macromol. 2020, 155, 233–240. [Google Scholar] [CrossRef]
- Su, H.; Zhang, W.; Wu, Y.; Han, X.; Liu, G.; Jia, Q.; Shan, S. Schiff base-containing dextran nanogel as pH-sensitive drug delivery system of doxorubicin: Synthesis and characterization. J. Biomater. Appl. 2018, 33, 170–181. [Google Scholar] [CrossRef]
- Wannasarit, S.; Wang, S.; Figueiredo, P.; Trujillo, C.; Eburnea, F.; Simón-Gracia, L.; Correia, A.; Ding, Y.; Teesalu, T.; Liu, D.; et al. A virus-mimicking pH-Responsive acetalated dextran-based membrane-active polymeric nanoparticle for intracellular delivery of antitumor therapeutics. Adv. Funct. Mater. 2018, 29, 1905352. [Google Scholar] [CrossRef]
- He, Z.; Santos, J.L.; Tian, H.; Huang, H.; Hu, Y.; Liu, L.; Leong, K.W.; Chen, Y.; Mao, H.-Q. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials 2017, 130, 28–41. [Google Scholar] [CrossRef]
- Hu, Q.; Luo, Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int. J. Biol. Macromol. 2018, 120, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Alibolandi, M.; Alabdollah, F.; Sadeghi, F.; Mohammadi, M.; Abnous, K.; Ramezani, M.; Hadizadeh, F. Dextran-b-poly (lactide-co-glycolide) polymersome for oral delivery of insulin: In vitro and in vivo evaluation. J. Control. Release 2016, 227, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Jamwal, S.; Ram, B.; Ranote, S.; Dharela, R.; Chauhan, G.S. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int. J. Biol. Macromol. 2019, 123, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Jiang, H.; Cui, X.; Liang, G.; Gao, M.; Huang, Z.; Xi, Q. Synthesis of methylprednisolone loaded ibuprofen modified dextran based nanoparticles and their application for drug delivery in acute spinal cord injury. Oncotarget 2017, 8, 99666. [Google Scholar] [CrossRef]
- Liu, W.; Quan, P.; Li, Q.; Tang, P.; Chen, J.; Jiang, T.; Cai, W. Dextran-based biodegradable nanoparticles: An alternative and convenient strategy for treatment of traumatic spinal cord injury. Int. J. Nanomed. 2018, 13, 4121. [Google Scholar] [CrossRef]
- Hoque, J.; Haldar, J. Direct synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms. ACS Appl. Mater. Interfaces 2017, 9, 15975–15985. [Google Scholar] [CrossRef]
- Konwar, A.; Kalita, S.; Kotoky, J.; Chowdhury, D. Chitosan–Iron oxide coated graphene oxide nanocomposite hydrogel: A robust and soft antimicrobial biofilm. ACS Appl. Mater. Interfaces 2016, 8, 20625–20634. [Google Scholar] [CrossRef]
- Zhou, C.; Li, P.; Qi, X.; Sharif, A.R.M.; Poon, Y.F.; Cao, Y.; Chang, M.W.; Leong, S.S.J.; Chan-Park, M.B. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials 2011, 32, 2704–2712. [Google Scholar] [CrossRef]
- McMahon, S.; Kennedy, R.; Duffy, P.; Vasquez, J.M.; Wall, J.G.; Tai, H.; Wang, W. Poly (ethylene glycol)-based hyperbranched polymer from RAFT and its application as a silver-sulfadiazine-loaded antibacterial hydrogel in wound care. ACS Appl. Mater. Interfaces 2016, 8, 26648–26656. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; De Vin, F.; Vaningelgem, F.; Degeest, B. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 2001, 11, 687–707. [Google Scholar] [CrossRef]
- Torino, M.I.; de Valdez, G.F.; Mozzi, F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front. Microbiol. 2015, 11, 834. [Google Scholar] [CrossRef] [PubMed]
- Monsan, P.; Bozonnet, S.; Albenne, C.; Joucla, G.; Willemot, R.-M.; Remaud-Siméon, M. Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 2001, 11, 675–685. [Google Scholar] [CrossRef]
- Semyonov, D.; Ramon, O.; Shoham, Y.; Shimoni, E. Enzymatically synthesized dextran nanoparticles and their use as carriers for nutraceuticals. Food Funct. 2014, 5, 2463–2474. [Google Scholar] [CrossRef] [PubMed]
- Bhavani, A.L.; Nisha, J. Dextran-The polysaccharide with versatile uses. Int. J. Pharma. Bio. Sci. 2010, 1, 569–573. [Google Scholar]
- Wolter, A.; Hager, A.; Zannini, E.; Czerny, M.; Arendt, E.K. Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. Int. J. Food Microbiol. 2014, 172, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Heinze, T.; Liebert, T.; Heublein, B.; Hornig, S. Functional polymers based on dextran. In Polysaccharides II; Klemm, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 199–291. ISBN 9783540371021. [Google Scholar]
- Aman, A.; Siddiqui, N.N.; Qader, S.A.U. Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohydr. Polym. 2012, 87, 910–915. [Google Scholar] [CrossRef]
- Moncayo-Martínez, D.C.; Buitrago-Hurtado, G.; Néstor, Y.; Algecira-Enciso, A. Películas comestibles a base de un biopolímero tipo dextrana Edible films based of dextran biopolymer. Agron. Colomb. 2016, 34, 107–109. [Google Scholar]
- Díaz-Montes, E.; Yáñez-Fernández, J.; Castro-Muñoz, R. Dextran/chitosan blend film fabrication for bio-packaging of mushrooms (Agaricus bisporus). J. Food Process. Preserv. 2021, 45, e15489. [Google Scholar] [CrossRef]
- Sarbini, S.R.; Kolida, S.; Naeye, T.; Einerhand, A.; Brison, Y.; Remaud-Simeon, M.; Monsan, P.; Gibson, G.R.; Rastall, R.A. In vitro fermentation of linear and -1,2-branched Dextrans by the human Fecal microbiota. Appl. Environ. Microbiol. 2011, 77, 5307–5315. [Google Scholar] [CrossRef] [PubMed]
- Sarbini, S.R.; Kolida, S.; Naeye, T.; Einerhand, A.W.; Gibson, G.R.; Rastall, R.A. The prebiotic effect of -1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system. J. Funct. Foods 2013, 5, 1938–1946. [Google Scholar] [CrossRef]
- Sharma, H.; Rai, A.K.; Dahiya, D.; Chettri, R.; Nigam, P.S. Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants. AIMS Microbiol. 2021, 7, 175–199. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Chettri, R.; Nigam, P.S. Biosynthesis of polyglutamic acid (γ-PGA), a biodegradable and economical polyamide biopolymer for industrial applications. In Microbial and Natural Macromolecules: Synthesis and Applications 2021; Academic Press: Cambridge, MA, USA, 2021; Volume 1, pp. 681–688. [Google Scholar]
- Dahiya, D.; Nigam, P.S. Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut-Brain Signaling. Microorganisms 2022, 10, 1687. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Probiotics, Prebiotics, Synbiotics, and Fermented Foods as Potential Biotics in Nutrition Improving Health via Microbiome- Gut-Brain Axis. Fermentation 2022, 8, 303. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota—Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics. Int. J. Mol. Sci. 2023, 24, 3074. [Google Scholar] [CrossRef]
- Dahiya, D.; Manuel, J.; Nigam, P.S. An Overview of Bioprocesses Employing Specifically Selected Microbial Catalysts for γ-Aminobutyric Acid Production. Microorganisms 2021, 9, 2457. [Google Scholar] [CrossRef]
- Silvério, S.C.; Macedo, E.A.; Teixeira, J.A.; Rodrigues, L.R. Perspectives on the biotechnological production and potential applications of lactosucrose: A review. J. Funct. Foods 2015, 19, 74–90. [Google Scholar] [CrossRef]
- Siddiqui, N.N.; Aman, A.; Silipo, A.; Qader, S.A.U.; Molinaro, A. Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydr. Polym. 2014, 99, 331–338. [Google Scholar] [CrossRef]
- Castro-Rodríguez, D.; Hernández-Sánchez, H.; Yáñez-Fernández, J. Structural characterization and rheological properties of dextran produced by native strains isolated of Agave salmiana. Food Hydrocoll. 2019, 90, 1–8. [Google Scholar] [CrossRef]
- BeMiller, J.N.; Whistler, R.L. Industrial Gums: Polysaccharides and Their Derivatives; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Llamas-Arriba, M.G.; Puertas, A.I.; Prieto, A.; López, P.; Cobos, M.; Miranda, J.I.; Marieta, C.; Ruas-Madiedo, P.; Dueñas, M.T. Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocoll. 2019, 89, 613–622. [Google Scholar] [CrossRef]
- Miao, M.; Huang, C.; Jia, X.; Cui, S.W.; Jiang, B.; Zhang, T. Physicochemical characteristics of a high molecular weight bioengineered-D-glucan from Leuconostoc citreum SK24.002. Food Hydrocoll. 2015, 50, 37–43. [Google Scholar] [CrossRef]
- Subathra Devi, C.; Reddy, S.; Mohanasrinivasan, V. Fermentative production of dextran using Leuconostoc spp. isolated from fermented food products. Front. Biol. 2014, 9, 244–253. [Google Scholar] [CrossRef]
- Sawale, S.D.; Lele, S.S. Statistical optimization of media for dextran production by Leuconostoc sp. isolated from fermented Idli batter. Food Sci. Biotechnol. 2010, 19, 471–478. [Google Scholar] [CrossRef]
- Shukla, R.; Shukla, S.; Bivolarski, V.; Iliev, I.; Ivanova, I.; Goyal, A. Structural characterization of insoluble dextran produced by Leuconostoc mesenteroides NRRL B-1149 in the presence of maltose. Food Technol. Biotechnol. 2011, 49, 291–296. [Google Scholar]
- Vega, J.; Sibaja, M.; Lopretti, M. Biosíntesis de dextranos de alto peso molecular mediante la inoculación con Leuconostoc síntesis y caracterización de hierro-dextranos. Innotec 2012, 7, 55–58. [Google Scholar]
- Han, J.; Hang, F.; Guo, B.; Liu, Z.; You, C.; Wu, Z. Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose. Carbohydr. Polym. 2014, 112, 556–562. [Google Scholar] [CrossRef]
- Lule, V.K.; Singh, R.; Pophaly, S.D.; Poonam Tomar, S.K. Production and structural characterisation of dextran from an indigenous strain of Leuconostoc mesenteroides BA08 in whey. Int. J. Dairy Technol. 2016, 69, 520–531. [Google Scholar] [CrossRef]
- Zarour, K.; Llamas, M.G.; Prieto, A.; Rúas-Madiedo, P.; Dueñas, M.T.; de Palencia, P.F.; Aznar, R.; Kihal, M.; López, P. Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohydr. Polym. 2017, 174, 646–657. [Google Scholar] [CrossRef]
- Moosavi-Nasab, M.; Gavahian, M.; Yousefi, A.R.; Askari, H. Fermentative production of dextran using food industry wastes. Int. J. Nutr. Food Eng. 2010, 4, 1921–1923. [Google Scholar]
- Esmaeilnejad-Moghadam, B.; Mokarram, R.R.; Hejazi, M.A.; Khiabani, M.S.; Keivaninahr, F. Low molecular weight dextran production by Leuconostoc mesenteroides strains: Optimization of a new culture medium and the rheological assessments. Bioact. Carbohydr. Diet. Fibre 2019, 18, 100181. [Google Scholar] [CrossRef]
- Prechtl, R.M.; Janßen, D.; Behr, J.; Ludwig, C.; Küster, B.; Vogel, R.F.; Jakob, F. Sucrose-induced proteomic response and carbohydrate utilization of lactobacillus sakei TMW 1.411 during dextran formation. Front. Microbiol. 2018, 9, 2796. [Google Scholar] [CrossRef] [PubMed]
- Abedin, R.M.; El-Borai, A.M.; Shall, M.A.; El-Assar, S.A. Optimization and statistical evaluation of medium components affecting dextran and dextransucrase production by Lactobacillus acidophilus ST76480. 01. Life Sci. 2013, 10, 1346–1353. [Google Scholar]
- Das, D.; Goyal, A. Characterization and biocompatibility of glucan: A safe food additive from probiotic Lactobacillus plantarum DM5. J. Sci. Food Agric. 2014, 94, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Côté, G.L.; Skory, C.D.; Unser, S.M.; Rich, J.O. The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture. Appl. Microbiol. Biotechnol. 2013, 97, 7265–7273. [Google Scholar] [CrossRef]
- Kareem, A.J.; Salman, J.A.S. Production of dextran from locally Lactobacillus spp. isolates. Rep. Biochem. Mol. Biol. 2019, 8, 278–286. [Google Scholar]
- Ajdi’c, D.; McShan, W.M.; McLaughlin, R.E.; Savi´c, G.; Chang, J.; Carson, M.B.; Primeaux, C.; Tian, R.; Kenton, S.; Jia, H.; et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 2002, 99, 14434–14439. [Google Scholar] [CrossRef]
- Bejar, W.; Gabriel, V.; Amari, M.; Morel, S.; Mezghani, M.; Maguin, E.; Fontagné-Faucher, C.; Bejar, S.; Chouayekh, H. Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. Int. J. Biol. Macromol. 2013, 52, 125–132. [Google Scholar] [CrossRef]
- Rosca, I.; Petrovici, A.R.; Peptanariu, D.; Nicolescu, A.; Dodi, G.; Avadanei, M.; Ivanov, I.C.; Bostanaru, A.C.; Mares, M.; Ciolacu, D. Biosynthesis of dextran by Weissella confusa and its In vitro functional characteristics. Int. J. Biol. Macromol. 2018, 107, 1765–1772. [Google Scholar] [CrossRef]
- Tang, X.; Liu, N.; Huang, W.; Cheng, X.; Wang, F.; Zhang, B.; Chen, J.; Jiang, H.; Omedi, J.O.; Li, Z. Syneresis rate, water distribution, and microstructure of wheat starch gel during freeze-thaw process: Role of a high molecular weight dextran produced by Weissella confusa QS813 from traditional sourdough. Cereal Chem. 2018, 95, 117–129. [Google Scholar] [CrossRef]
- Netsopa, S.; Niamsanit, S.; Sakloetsakun, D.; Milintawisamai, N. Characterization and rheological behavior of dextran from Weissella confusa R003. Int. J. Polym. Sci. 2018, 2018, 5790526. [Google Scholar] [CrossRef]
- Malang, S.K.; Maina, N.H.; Schwab, C.; Tenkanen, M.; Lacroix, C. Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiol. 2015, 46, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Ahn, H.J.; Kim, S.G.; Chung, C.H. Dextran-like exopolysaccharide-producing Leuconostoc and Weissella from kimchi and its ingredients. Food Sci. Biotechnol. 2013, 22, 1047–1053. [Google Scholar] [CrossRef]
- Yu, Y.J.; Chen, Z.; Chen, P.T.; Ng, I.S. Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. J. Biosci. Bioeng. 2018, 126, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Tingirikari, J.M.R.; Kothari, D.; Shukla, R.; Goyal, A. Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive. Int. J. Food Sci. Nutr. 2014, 65, 686–691. [Google Scholar] [CrossRef]
- Rao, T.J.M.; Goyal, A. A novel high dextran yielding Weissella cibaria JAG8 for cereal food application. Int. J. Food Sci. Nutr. 2013, 64, 346–354. [Google Scholar] [CrossRef]
- Ye, G.; Chen, Y.; Wang, C.; Yang, R.; Bin, X. Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage. Int. J. Biol. Macromol. 2018, 120, 1315–1321. [Google Scholar] [CrossRef]
- Baruah, R.; Maina, N.H.; Katina, K.; Juvonen, R.; Goyal, A. Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). Int. J. Food Microbiol. 2016, 242, 124–131. [Google Scholar] [CrossRef]
- Hu, Y.; Gänzle, M.G. Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10 M. Int. J. Food Microbiol. 2018, 280, 27–34. [Google Scholar] [CrossRef]
- Galle, S.; Schwab, C.; Dal Bello, F.; Coffey, A.; Gänzle, M.G.; Arendt, E.K. Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int. J. Food Microbiol. 2012, 155, 105–112. [Google Scholar] [CrossRef]
- Ahmed, R.Z.; Siddiqui, K.; Arman, M.; Ahmed, N. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr. Polym. 2012, 90, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.; Nigam, P.S. Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms. Sustainability 2022, 14, e8673. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Bioethanol synthesis for fuel or beverages from the processing of agri-food by-products and natural biomass using economical and purposely modified biocatalytic systems. AIMS Energy 2018, 6, 979–992. [Google Scholar] [CrossRef]
- Nigam, P.S. Microbial Enzymes with Special Characteristics for Biotechnological Applications. Biomolecules 2013, 3, 597–611. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. An overview of three biocatalysts of pharmaceutical importance synthesized by microbial cultures. AIMS Microbiology 2021, 7, 124–137. [Google Scholar] [CrossRef]
Derivatives of Dextran | Product Known as | Applications | Functions |
---|---|---|---|
Dextran magnetite: Hydrophilic colloidal solution of superparamagnetic iron oxide coated with various dextran derivative | DM Magnetic iron oxide-dextran complex | Magnetic particle imaging for diagnostic imaging; Tracer for sentinel lymph node biopsy, safer than radioisotope tracer; Reagent; A contrast medium used for magnetic resonance imaging | Various functionalities obtained by changing the structure of the coating material around the magnetic core of iron oxide |
Iron dextran complex | DFe | Iron supplement for animals | Prevention and treatment of anemia in piglets |
Cationic dextran: Raw material for cosmetics added for a superior conditioning effect for hair and skin. A desired conditioning effect is achieved by choosing its molecular weight. | CDCL (MW 10K); CDC (MW 40K); CDCH (MW 500K) | Cosmetic ingredient for hair care and skin care products | Conditioning, moisturizing and protective effect, wave retention |
Dextran sulfate sodium: Sodium salt of sulfate ester that is prepared by sulfation of partial decomposition products of dextran | DSS | Drug substance; Additive; Medical device; to induce colitis in mice and rats | Treatment of hyperlipidemia; Cosmetic ingredient; Laboratory reagent for biochemistry; The raw material of medical devices |
Sodium carboxymethyl dextran | CMD | Cosmetic ingredients for hair care and skin care products | Conditioning, moisturizing, and thickening effect, smooth feeling |
Dextran ester: Acyl groups substitution with different carbon numbers from acetate to laurate | Dextran valerate, Dextran hexanoate | Transparent coating for various materials, including polyvinyl alcohol (PVA) films, wood, glass, and aluminum | Hot-melt-type adhesives |
Diethyl-aminoethyl-dextran: Polycationic derivative of dextran | DEAE | Nanocarrier of chemotherapeutic drugs | In pharmaceutical functions |
Fluorescent dextran derivatives | Derivatives labeled with FITC, TRITC, ATTO-dyes | Mainly used for studies of permeability and microcirculation in cells and tissues | For studies of drug delivery, as molecular size markers. |
Dextran methacrylate:
|
| Contact lenses | |
Doxorubicin–BSA–dextran | Nanoparticles carrier for pharmaceutical chemicals | Drug delivery | Antitumor effects |
Amphipathic dextran-doxorubicin Prodrug micelles | Carrier for drug delivery to the site | Therapy for solid tumors | |
Phenyl-dextran | Used in the preparation of gels and coatings | Hydrophobic material | |
Meltable dextran esters | Significant melting behavior and biocompatibility | Good functional coating material | |
Dextran spray-dried powders | Required for the encapsulation of drugs and food additives | Used in the pharmaceutical and food industry |
Dextran Product Specification | Substrate/s Used in Biosynthesis | Strains Used to Conduct Fermentative-Production | Reference |
---|---|---|---|
358 MDa with α-(1→6) α-(1→3) | 2%, w/v solution of sucrose | Leuconostoc carnosum strain CUPV411 an isolate from apple pomace | [76] |
46 MDa 56% of α-(1→6) 44% of α-(1→3) | 10%, w/v solution of sucrose | L. citreum strain SK24.002 an isolate from Fermented pickle | [77] |
n.a. | 15%, w/v solution of sucrose | Leuconostoc sp. strain LS1 an isolate from fermented cabbage | [78] |
n.a. | 15%, w/v solution of sucrose | Leuconostoc sp. strain LI1, an isolate from fermented rice batter | [78] |
93% of α-(1→6) 07% of α-(1→3) | 10%, w/v solution of sucrose | L. mesenteroides strain SD1, an isolate from green maguey—Agave salmiana | [74] |
95% of α-(1→6) 05% of α-(1→3) | 10%, w/v solution of sucrose | L. mesenteroides strain SD23, an isolate of Agave salmiana | [74] |
94% of α-(1→6) 06% of α-(1→3) | 10%, w/v solution of sucrose | L. mesenteroides strain SF2 an isolate from Agave salmiana | [74] |
74% of α-(1→6) 26% of α-(1→3) | 10%, w/v solution of sucrose | L. mesenteroides strain SF3 an isolate from Agave salmiana | [74] |
970 KDa with α-(1→6) α-(1→3) | 22%, w/v solution of sucrose | L. mesenteroides strain UICT/L18 an isolate from fermented rice batter | [79] |
52% of α-(1→6) 48% of α-(1→3) | Solution of 10% sucrose with 5% maltose | L. mesenteroides strain NRRL B-1149 | [80] |
10–40 MDa | 10%, w/v solution of sucrose | L. mesenteroides strain AA1 an isolate from fermented cabbage | [61] |
960 MDa | Solution of 15%, w/v sucrose with pineapple juice | L. mesenteroides strain ATCC 10830 | [81] |
635 KDa 94% of α-(1→6) 06% of α-(1→3) | Solution of 15%, w/v sucrose with tomato juice | L. mesenteroides strain BD1710 | [82] |
25–40 MDa with α-(1→6) α-(1→3) | 10%, w/v solution of sucrose | L. mesenteroides strain KIBGEIB22M20 | [73] |
15–20 MDa with α-(1→6) α-(1→3) ß-(2→6) | 10%, w/v solution of sucrose | L. mesenteroides strain KIBGE-IB22 | [73] |
93% of α-(1→6) 07% of α-(1→3) | Solution of 5%, w/v sucrose with whey | L. mesenteroides strain BA08 an isolate from fermented rice batter | [83] |
230 MDa 390 MDa 440 MDa 210 MDa | 2%, w/v solution of sucrose | L. mesenteroides strains CM9, an isolate from camel milk, CM30, an isolate from camel milk, RTF10, an isolate from meat, SM34, an isolate from sheep milk | [84] |
n.d. | Solutions of 2–10% whey with molasses; 6% cheese-whey | L. mesenteroides strain NRRL B512 | [85] |
<40 kDa | 3%, w/v solution of sucrose | L. mesenteroides strain NRRL B512 | [86] |
<10 kDa | 5% milk permeate | L. mesenteroides strain NRRL B512 | [86] |
Dextran Product Specification | Substrate/s Used in Biosynthesis | Strains Used to Conduct Fermentative-Production | Reference |
---|---|---|---|
87% of α-(1→6) 13% of α-(1→3) | 5%, w/v solution of sucrose | Lactobacillus plantarum Strain DM5 An isolate from fermented beverage | [89] |
55% of α-(1→6) 45% of α-(1→3) | 15%, w/v solution of sucrose | L. satsumensis Strain NRRL B-59839 isolated from Kefir grains | [90] |
n.a. | 15%, w/v solution of sucrose | L. acidophilus
Strains LV3, LV4, LV5 isolate from vaginal swabs | [91] |
170 MDa | 2%, w/v solution of sucrose | L. sakei Strain MN1 isolated from meat products | [92] |
n.a. | 15%, w/v solution of sucrose | L. fermentum Strain LS2 isolated from the stool sample | [91] |
n.a. | 15%, w/v solution of sucrose | L. plantarum Strain LS3 isolated from the stool sample | [91] |
123 MDa with α-(1→6) α-(1→3) | 2%, w/v solution of sucrose | L. mali
Strain CUPV271 an isolate from the ropy slime of ham | [76] |
n.a. | 15%, w/v solution of sucrose | L. gasseri Strains LV1, LV2, isolated from vaginal swabs, strain LS1 isolated from stool samples | [91] |
High molecular weight dextran | 5.0%, w/v sucrose | L. sakei strain TMW 1.411, isolated from sauerkraut | [87] |
High molecular weight dextran with increasing viscosity | 15%, w/v solution of sucrose | L. acidophilus strain ST76480.01 an isolate from fermented vegetables | [88] |
Dextran Product Specification | Substrate/s Used in Biosynthesis | Strains Used to Conduct Fermentative-Production | Reference |
---|---|---|---|
180 kDa 96% of α-(1→6) 04% of α-(1→3) | 4%, w/v solution of sucrose | Weissella
sp. Strain TN610 isolated from pear | [93] |
120–870 kDa 96% of α-(1→6) 04% of α-(1→3) | 8%, w/v solution of sucrose | W. confusa Strain PP29 isolated from yogurt | [94] |
120–250 kDa 96% of α-(1→6) 04% of α-(1→3) | Solution of 8%, w/v sucrose with milk | W. confusa Strain PP29 isolated from yogurt | [94] |
10 MDa 97% of α-(1→6) 03% of α-(1→3) | 5%, w/v solution of sucrose | W. confusa Strain QS813, a sourdough inoculum | [95] |
10 MDa 97% of α-(1→6) 03% of α-(1→3) | 10%, w/v solution of sucrose | W. confusa Strain R003 isolated from sugarcane juice | [96] |
>20 MDa 97% of α-(1→6) 03% of α-(1→3) | 10%, w/v solution of sucrose | W. confusa Strains A3/2-1, A4/2-1, F3/2-2, E5/2-1, G3/2-2 isolated from fermented cassava | [97] |
1158 kDa α-(1→6) α-(1→3) | 10%, w/v solution of sucrose | W. confusa
Strain K1-Lb5 isolated from kimchi (fermented food product) | [98] |
>20 MDa 97% of α-(1→6) 03% of α-(1→3) | 10%, w/v solution of sucrose | W. confusa
three strains 8CS-2, 11GU-1, 11GT-2, isolates of fermented milk | [97] |
12 MDa α-(1→6) | 20%, w/v solution of sucrose | W. ciberia
Strain 27 isolated from kimchi (fermented food product) | [99] |
800 kDa | 10%, w/v solution of sucrose | W. ciberia
Strain JAG8 isolated from apple skin | [100] |
177 kDa 93% α-(1→6) 07% α-(1→3) | 2%, w/v solution of sucrose | W. ciberia
Strain JAG8 isolated from apple skin | [101] |
390 KDa 96% α-(1→6) 04% α-(1→3) | 5%, w/v solution of sucrose | W. ciberia
Strain YB-1 isolated from fermented cabbage | [102] |
97% α-(1→6) 03% α-(1→3) | 2%, w/v solution of sucrose | W. ciberia
Strain RBA-12 isolated from Citrus maxima | [103] |
5–40 MDa | 0.5 M solution of sucrose | W. ciberia Strain 10 M | [104] |
>20 MDa 95% α-(1→6) 05% α-(1→3) | 20%, w/v solution of sucrose | W. ciberia Strain 11GM-2 isolated from fermented milk | [97] |
α-(1→6) | 10%, w/v solution of sucrose | W. ciberia Strain MG1 | [105] |
>2 MDa 97% α-(1→6) 03% α-(1→3) | 15%, w/v solution of sucrose | W. ciberia Strain CMGDEX3 isolated from fermented cabbage | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahiya, D.; Nigam, P.S. Dextran of Diverse Molecular-Configurations Used as a Blood-Plasma Substitute, Drug-Delivery Vehicle and Food Additive Biosynthesized by Leuconostoc, Lactobacillus and Weissella. Appl. Sci. 2023, 13, 12526. https://doi.org/10.3390/app132212526
Dahiya D, Nigam PS. Dextran of Diverse Molecular-Configurations Used as a Blood-Plasma Substitute, Drug-Delivery Vehicle and Food Additive Biosynthesized by Leuconostoc, Lactobacillus and Weissella. Applied Sciences. 2023; 13(22):12526. https://doi.org/10.3390/app132212526
Chicago/Turabian StyleDahiya, Divakar, and Poonam Singh Nigam. 2023. "Dextran of Diverse Molecular-Configurations Used as a Blood-Plasma Substitute, Drug-Delivery Vehicle and Food Additive Biosynthesized by Leuconostoc, Lactobacillus and Weissella" Applied Sciences 13, no. 22: 12526. https://doi.org/10.3390/app132212526
APA StyleDahiya, D., & Nigam, P. S. (2023). Dextran of Diverse Molecular-Configurations Used as a Blood-Plasma Substitute, Drug-Delivery Vehicle and Food Additive Biosynthesized by Leuconostoc, Lactobacillus and Weissella. Applied Sciences, 13(22), 12526. https://doi.org/10.3390/app132212526