Long-Term Maintenance Planning Method of Rural Roads under Limited Budget: A Case Study of Road Network
Abstract
:1. Introduction
2. Research Conditions and Methods
2.1. Key Indicators and Conditions
2.1.1. Pavement Performance Evaluation
2.1.2. Maintenance Measures and Effects
2.1.3. Treatment Conditions
2.2. Analysis of Pavement Performance Development Law
2.2.1. Performance Decay Analysis
2.2.2. Selection of Typical Road Sections
2.2.3. Determination of Prediction Model
- (1)
- Prediction model for RPCI
- (2)
- Prediction model for RRQI
2.3. Optimization Methods
2.3.1. Decision Optimization Method
2.3.2. Benefit Optimization Calculation
2.4. Data Preparation of Case Studies
3. Results and Discussion
3.1. Road Condition Prediction Analysis
3.2. Optimization Scheme Determination
4. Conclusions
- (1)
- Based on the maintenance characteristics of rural roads in China, typical maintenance technologies suitable for different strength grades are analyzed and selected. RPCI and RRQI decision tree models for asphalt and cement pavements are established, proposing maintenance countermeasure sets under different performance combinations.
- (2)
- Considering the impact of pavement structure, maintenance history, and traffic volume on performance degradation, typical rural road sections in cities and counties like Haimen, Guannan, and Yangzhou in Jiangsu province were selected. By fitting and analyzing a large amount of detection data, RPCI and RRQI pavement performance prediction models based on five treatment grades are established.
- (3)
- To address the complex solution process of rural road maintenance decision-making, an improved heuristic optimization method is proposed, establishing a model based on pavement performance benefit. Through optimization calculations, a maintenance strategy with the best benefits in the life cycle is quickly generated.
- (4)
- A case study of ten typical rural road sections in Haimen City, Jiangsu province was conducted to apply long-term maintenance planning from 2023 to 2036. By comparing and analyzing the prediction effects of pavement performance (RPCI and RRQI) under different budget plans, a maintenance strategy with a reasonable budget and maximum benefit for the planned road section in the next 14 years life cycle is determined, verifying the feasibility and effectiveness of the research model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pantha, B.R.; Yatabe, R.; Bhandary, N.P. GIS-based highway maintenance prioritization model: An integrated approach for highway maintenance in Nepal mountains. J. Transp. Geogr. 2010, 18, 426–433. [Google Scholar] [CrossRef]
- Mergi, K.M.; Mohamed, E. Application of Pavement Condition Index (PCI) Methodology in PavementDistress Evaluation and Maintenance Prioritization. J. Basic Eng. Stud. Board 2012, 1, 4–6. [Google Scholar]
- Mathew, B.S.; Isaac, K.P. Optimization of maintenance strategy for rural road. Adv. Mater. Res. 2015, 40, 2915–2918. [Google Scholar]
- Torres-Machi, C.; Pellicer, E.; Yepes, V.; Chamorro, A. Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. J. Clean. Prod. 2017, 148, 90–102. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Khan, A.B.; Choudhary, S. A Rational Strategy for Resource Allocation for Rural Road Maintenance. Transp. Res. Procedia 2017, 25, 2195–2207. [Google Scholar] [CrossRef]
- Pasindu, H.; Gamage, D.; Bandara, J. Framework for selecting pavement type for low volume roads. Transp. Res. Procedia 2020, 48, 3924–3938. [Google Scholar] [CrossRef]
- Yogesh, J.; Sanjeev, S. Planning of rural road network using sustainable practices to maximize the accessibility to health and education facilities using ant colony optimization. J. Books 2023, 35, 324–338. [Google Scholar]
- Kabir, G.; Sadiq, R.; Tesfamariam, S. A review of multi-criteria decision-making methods for infrastructure management. Struct. Infrastruct. Eng. 2013, 10, 1176–1210. [Google Scholar] [CrossRef]
- Choi, J.-H. Significance ranking of quality characteristics on pavement performance based on neural network analysis. KSCE J. Civ. Eng. 2005, 9, 171–178. [Google Scholar] [CrossRef]
- Abu Dabous, S.; Zeiada, W.; Zayed, T.; Al-Ruzouq, R. Sustainability-informed multi-criteria decision support framework for ranking and prioritization of pavement sections. J. Clean. Prod. 2019, 244, 118755. [Google Scholar] [CrossRef]
- Fecarotti, C.; Andrews, J.; Pesenti, R. A mathematical programming model to select maintenance strategies in railway networks. Reliab. Eng. Syst. Saf. 2021, 216, 107940. [Google Scholar] [CrossRef]
- Han, C.; Ma, T.; Chen, S. Asphalt pavement maintenance plans an intelligent decision model based on a reinforcement learning algorithm. Constr. Build. Mater. 2021, 299, 124278. [Google Scholar] [CrossRef]
- Hanandeh, S.M. Introducing mathematical modeling to estimate pavement quality index of flexible pavements based on genetic algorithm and artificial neural networks. Case Stud. Constr. Mater. 2022, 16, e00991. [Google Scholar] [CrossRef]
- Kabir, M.; Mobin, J.; Nayeem, M.A.; Habib, M.A.; Rahman, M.S. Multi-objective optimization and heuristic based solutions for evacuation modeling. Transp. Res. Interdiscip. Perspect. 2023, 18, 100798. [Google Scholar] [CrossRef]
- Tang, X.Y.; Xiao, J.Z. Natural gravel-recycled aggregate concrete applied in rural highway pavement: Material properties and life cycle assessment. J. Clean. Prod. 2022, 334, 130219. [Google Scholar] [CrossRef]
- Shtayat, A.; Moridpour, S.; Best, B.; Shroff, A.; Raol, D. A review of monitoring systems of pavement condition in paved and unpaved roads. J. Traffic Transp. Eng. 2020, 7, 629–638. [Google Scholar] [CrossRef]
- Yu, J.; Jahren, C.T.; Williams, R.C. Development of holding strategies for deteriorated low-volume roads: Introduction to test sections in Iowa. Transp. Res. Rec. 2015, 2474, 217–224. [Google Scholar] [CrossRef]
- Stein, N.; Weisbrod, G.; Sieber, M. Transportation Research Board. Investment Prioritization Methods for Low-Volume Roads; The National Academies Press: Washington, DC, USA, 2018; 73p, ISBN 9780309390286. [Google Scholar]
- Pantuso, A.; Loprencipe, G.; Bonin, G.; Teltayev, B.B. Analysis of Pavement Condition Survey Data for Effective Implementation of a Network Level Pavement Management Program for Kazakhstan. Sustainability 2019, 11, 901. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, M. Multi-objective optimization for pavement maintenance and rehabilitation decision-making: A critical review and future directions. Autom. Constr. 2021, 130, 103840. [Google Scholar] [CrossRef]
- Chu, J.C.; Huang, K.-H. Mathematical programming framework for modeling and comparing network-level pavement maintenance strategies. Transp. Res. Part B Methodol. 2018, 109, 1–25. [Google Scholar] [CrossRef]
Evaluating Indicator | Evaluation Grade | ||||
---|---|---|---|---|---|
Excellent | Good | Average | Inferior and Poor | ||
Pavement damage | RPCI | ≥90 | ≥80 | ≥70, <80 | <70 |
CR (%) | ≤0.4 | ≤2.6, <0.4 | >2.6, ≤7.8 | >7.8 | |
Pavement driving quality | RRQI | ≥90 | ≥80, <90 | ≥70, <80 | <70 |
IR (m/km) | ≤3.0 | >3.0, ≤4.7 | >4.7, ≤5.8 | >5.8 |
Measures | Cost (China RMB) ¥/m2 | Life/ Year | Implementation Effect (Improvement Value) | |
---|---|---|---|---|
RPCI | RRQI | |||
P1: slurry sealing layer | 29 | 2–4 | MIN (100, RPCI + 10) | MIN (100, RRQI + 10) |
P2: thin layer cover | 90 | 4–6 | MIN (100, RPCI + 10) | MIN (100, RRQI + 10) |
P3: crushed stone regeneration | 72 | 4–6 | MIN (100, RPCI + 20) | MIN (100, RRQI + 20) |
P4: milling and repaving 1 layer | 134 | 6–-8 | 100 | 100 |
P5: milling and repaving 2 layers | 298 | 7–9 | 100 | 100 |
Pavement Structure | Maintenance History | Road Section Location (Region and Year) | Thickness (cm) | Traffic Level | RIPCI |
---|---|---|---|---|---|
Asphalt pavement | Original pavement | K003 + 200-K005 + 300 (Haimen City, 2008) | 30 | Medium | Excellent(94.69) |
Slurry sealing layer | K009 + 100-K010 + 000 (Haimen City, 2020) | ||||
Thin layer cover | K006 + 700-K007 + 200 (Haimen City, 2015) | ||||
Crushed stone regeneration | K015 + 700-K017 + 200 (Haimen City, 2015) | ||||
Milling and repaving one layer | K034 + 900-K036 + 600 (Haimen City, 2015) | ||||
Milling and repaving two layers | K049 + 100-K053 + 200 (Haimen City, 2015) | ||||
Cement pavement | Original pavement | K012 + 000-K016 + 2000 (Guannan County, 2008) | 22 | Medium | Excellent(92.02) |
Slurry sealing layer | K007 + 500-K009 + 000 (Guannan County, 2019) | ||||
Thin layer cover | K010 + 500-K013 + 000 (Guannan County, 2019) | ||||
Crushed stone regeneration | K016 + 000-K016 + 600 (Guannan County, 2019) | ||||
Milling and repaving one layer | K027 + 200-K028 + 400 (Yangzhou City, 2018) | ||||
Milling and repaving two layers | K024 + 100-K026 + 500 (Yangzhou City, 2015) |
Route | Lane | Starting Station | Ending Station | RPCI | RRQI | RIPCI | Pavement Type |
---|---|---|---|---|---|---|---|
Rui Min Line | R (1) | K0 + 000 | K1 + 000 | 96.99 | 95.89 | 98.32 | Asphalt |
Rui Min Line | R (1) | K1 + 000 | K2 + 000 | 96.75 | 96.21 | 95.15 | Asphalt |
Rui Min Line | R (1) | K2 + 000 | K3 + 000 | 89.22 | 91.28 | 93.65 | Asphalt |
…… | …… | …… | …… | …… | …… | …… | …… |
Rui Min Line | R (1) | K19 + 000 | K19 + 950 | 90.34 | 91.12 | 93.80 | Asphalt |
Huo Si Line | L (1) | K0 + 000 | K1 + 000 | 91.60 | 89.93 | 92.85 | Cement |
Huo Si Line | L (1) | K1 + 000 | K2 + 000 | 94.64 | 95.20 | 93.46 | Cement |
Huo Si Line | L (1) | K2 + 000 | K3 + 000 | 95.13 | 96.40 | 95.21 | Asphalt |
…… | …… | …… | …… | …… | …… | …… | |
Guo Xin Line | R (1) | K0 + 000 | K1 + 000 | 92.89 | 93.71 | 95.78 | Asphalt |
Guo Xin Line | R (1) | K1 + 000 | K2 + 000 | 84.26 | 89.79 | 95.85 | Asphalt |
Guo Xin Line | R (1) | K2 + 000 | K3 + 000 | 96.39 | 93.74 | 98.45 | Asphalt |
…… | …… | …… | …… | …… | …… | …… | …… |
YangHai Line | R (1) | K0 + 000 | K1 + 000 | 89.41 | 90.76 | 95.32 | Asphalt |
YangHai Line | R (1) | K1 + 000 | K2 + 000 | 91.93 | 93.34 | 94.00 | Asphalt |
…… | …… | …… | …… | …… | …… | …… | …… |
YangHai Line | R (1) | K32 + 000 | K32 + 160 | 91.92 | 92.19 | 96.26 | Asphalt |
Year | Route | Lane | Starting Station | Ending Station | Treatment Measures | Cost (China RMB)/¥ | Bene_ Cost |
---|---|---|---|---|---|---|---|
2023 | Guo Xin Line | L (1) | K1 + 000 | K2 + 000 | Milling and repaving 1 layer | 502,500 | 2.82 |
2023 | Dong Tong | L (1) | K3 + 000 | K4 + 000 | Crushed stone regeneration | 270,000 | 3.77 |
2023 | Yang Hai Line | R (1) | K17 + 000 | K18 + 000 | Slurry sealing layer | 131,250 | 9.14 |
2023 | Guo Xin Line | R (1) | K1 + 000 | K2 + 000 | Milling and repaving 1 layer | 502,500 | 2.82 |
2023 | Rui Min Line | R (1) | K7 + 000 | K8 + 000 | Milling and repaving 1 layer | 502,500 | 2.86 |
2023 | Yang Hai Line | R (1) | K5 + 000 | K6 + 000 | Milling and repaving 1 layer | 502,500 | 2.90 |
2023 | Rui Min Line | L (1) | K2 + 000 | K3 + 000 | Milling and repaving 1 layer | 502,500 | 2.92 |
2023 | Rui Min Line | R (1) | K8 + 000 | K9 + 000 | Milling and repaving 1 layer | 502,500 | 2.86 |
2024 | Rui Min Line | L (1) | K4 + 000 | K5 + 000 | Milling and repaving 1 layer | 502,500 | 3.36 |
2024 | Yang Hai Line | R (1) | K20 + 000 | K21 + 000 | Crushed stone regeneration | 270,000 | 4.44 |
2024 | Yang Hai Line | L (1) | K13 + 000 | K14 + 000 | Crushed stone regeneration | 270,000 | 4.44 |
2025 | Yang Hai Line | R (1) | K8 + 000 | K9 + 000 | Milling and repaving 2 layer | 502,500 | 3.54 |
2025 | Rui Min Line | L (1) | K15 + 000 | K16 + 000 | Milling and repaving 2 layer | 502,500 | 3.74 |
2025 | Guo Xin Line | L (1) | K0 + 000 | K1 + 000 | Milling and repaving 2 layer | 502,500 | 3.54 |
…… | …… | …… | …… | …… | …… | …… | …… |
2036 | Rui Min Line | L (1) | K5 + 000 | K6 + 000 | Milling and repaving 2 layer | 1,117,500 | 0.22 |
2036 | Rui Min Line | R (1) | K2 + 000 | K3 + 000 | Milling and repaving 2 layer | 1,117,500 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Huang, J.; Yang, X.; Chen, L.; Chen, T. Long-Term Maintenance Planning Method of Rural Roads under Limited Budget: A Case Study of Road Network. Appl. Sci. 2023, 13, 12661. https://doi.org/10.3390/app132312661
Han C, Huang J, Yang X, Chen L, Chen T. Long-Term Maintenance Planning Method of Rural Roads under Limited Budget: A Case Study of Road Network. Applied Sciences. 2023; 13(23):12661. https://doi.org/10.3390/app132312661
Chicago/Turabian StyleHan, Chao, Jiuda Huang, Xu Yang, Lili Chen, and Tao Chen. 2023. "Long-Term Maintenance Planning Method of Rural Roads under Limited Budget: A Case Study of Road Network" Applied Sciences 13, no. 23: 12661. https://doi.org/10.3390/app132312661
APA StyleHan, C., Huang, J., Yang, X., Chen, L., & Chen, T. (2023). Long-Term Maintenance Planning Method of Rural Roads under Limited Budget: A Case Study of Road Network. Applied Sciences, 13(23), 12661. https://doi.org/10.3390/app132312661