A Novel Real-Time PV Error Handling Exploiting Evolutionary-Based Optimization
Abstract
:1. Introduction
- Development of a novel genetic algorithm for MPP optimization in single-diode photovoltaic systems.
- Integration of the Lambert function into the optimization function of the genetic algorithm to ensure PV constraints are met.
- Implementation of a real-time PV error detection system to detect and notify the end-user of any potential malfunction or deviation between real and predicted PV values.
2. Related Work
3. Methodology
3.1. Single-Diode PV Modeling
3.2. Maximum Power Point Tracking
- W/m, C, , are the standard test values for irradiance, temperature, short circuit current, and open circuit voltage, respectively.
- G, T, , are the actual values for the irradiance, temperature, short circuit current, and open circuit voltage, respectively.
- , are the temperature coefficients for current and voltage, respectively.
3.3. Power Optimization Process
3.3.1. Fitness Function
3.3.2. Genetic Algorithm Modeling
Algorithm 1 Genetic Algorithm for Minimizing |
|
3.3.3. Encoding of Voltage
3.3.4. Decoding of Voltage
3.3.5. Selection
3.3.6. Crossover
3.3.7. Mutation
3.4. PV Error Handling
Algorithm 2 PV Error Handling | |
1: | function handlePVError(, , , , threshold) |
2: | ▹ Calculate error for voltage and current |
3: | |
4: | |
5: | ▹ Check if error exceeds the predefined threshold |
6: | if threshold or threshold then |
7: | ▹ Anomaly detected, flag the occurrence |
8: | “Anomaly Detected” |
9: | else |
10: | ▹ System operates within desired parameters |
11: | “Normal Operation” |
12: | end if |
13: | ▹ Output the results |
14: | return , , |
15: | end function |
3.5. Overall Architecture
Algorithm 3 Real-time PV Error Handling |
Require: , , , , ,
|
4. Results
4.1. Experimental Set Up
Sensors and Meters
4.2. Genetic Algorithm Tests
4.2.1. Population Size and Number of Generations
4.2.2. Crossover and Mutation Probability
4.3. GA Accuracy
4.4. PV Error Generation
4.5. Comparing Proposed Fitness Function with MPC-Based Methods
4.6. Genetic Algorithm Performance Test Compared with Other Optimization Algorithms
4.7. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kingsley-Amaehule, M.; Uhunmwangho, R.; Nwazor, N.; Okedu, K.E. Smart Intelligent Monitoring and Maintenance Management of Photo-voltaic Systems. Int. J. Smart Grid 2022, 6, 110–122. [Google Scholar]
- Jaiswal, S.P.; Shrivastava, V.; Palwalia, D.K. Opportunities and challenges of PV technology in power system. Mater. Today Proc. 2021, 34, 593–597. [Google Scholar] [CrossRef]
- Rasheed, M.; Shihab, S.; Rashid, T.; Ounis, T.D. Parameters Determination of PV Cell Using Computation Methods. J. Al-Qadisiyah Comput. Sci. Math. 2021, 13, 1. [Google Scholar] [CrossRef]
- Limouni, T.; Yaagoubi, R.; Bouziane, K.; Guissi, K.; Baali, E.H. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renew. Energy 2023, 205, 1010–1024. [Google Scholar] [CrossRef]
- Rasheed, M.; Alabdali, O.; Shihab, S. A New Technique for Solar Cell Parameters Estimation of The Single-Diode Model. J. Phys. Conf. Ser. 2021, 1879, 032120. [Google Scholar] [CrossRef]
- Nayak, B.; Mohapatra, A.; Mohanty, K.B. Parameter estimation of single diode PV module based on GWO algorithm. Renew. Energy Focus 2019, 30, 1–12. [Google Scholar] [CrossRef]
- Rasheed, M.; Shihab, S.; Rashid, T. The Single Diode Model for PV Characteristics Using Electrical Circuit. J. Al-Qadisiyah Comput. Sci. Math. 2021, 13, 131. [Google Scholar] [CrossRef]
- Mazzeo, D.; Matera, N.; De Luca, P.; Baglivo, C.; Congedo, P.M.; Oliveti, G. A literature review and statistical analysis of photovoltaic-wind hybrid renewable system research by considering the most relevant 550 articles: An upgradable matrix literature database. J. Clean. Prod. 2021, 295, 126070. [Google Scholar] [CrossRef]
- Rasheed, M.; Alabdali, O.; Hassan, H.H. Parameters Extraction of a Single-Diode Model of Photovoltaic Cell Using False Position Iterative Method. J. Phys. Conf. Ser. 2021, 1879, 032113. [Google Scholar] [CrossRef]
- Houssein, E.H.; Zaki, G.N.; Diab, A.A.Z.; Younis, E.M. An efficient Manta Ray Foraging Optimization algorithm for parameter extraction of three-diode photovoltaic model. Comput. Electr. Eng. 2021, 94, 107304. [Google Scholar] [CrossRef]
- Korkas, C.; Dimara, A.; Michailidis, I.; Krinidis, S.; Marin-Perez, R.; Martínez García, A.I.; Skarmeta, A.; Kitsikoudis, K.; Kosmatopoulos, E.; Anagnostopoulos, C.N.; et al. Integration and Verification of PLUG-N-HARVEST ICT Platform for Intelligent Management of Buildings. Energies 2022, 15, 2610. [Google Scholar] [CrossRef]
- Ayadi, F.; Colak, I.; Genc, N.; Bulbul, H.I. Impacts of wind speed and humidity on the performance of photovoltaic module. In Proceedings of the 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 3–6 November 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Kim, G.G.; Choi, J.H.; Park, S.Y.; Bhang, B.G.; Nam, W.J.; Cha, H.L.; Park, N.; Ahn, H.K. Prediction model for PV performance with correlation analysis of environmental variables. IEEE J. Photovoltaics 2019, 9, 832–841. [Google Scholar] [CrossRef]
- Lopez-Santos, O.; Garcia, G.; Martinez-Salamero, L.; Giral, R.; Vidal-Idiarte, E.; Merchan-Riveros, M.C.; Moreno-Guzman, Y. Analysis, design, and implementation of a static conductance-based MPPT method. IEEE Trans. Power Electron. 2018, 34, 1960–1979. [Google Scholar] [CrossRef]
- Ebrahimi, S.M.; Salahshour, E.; Malekzadeh, M.; Gordillo, F. Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm. Energy 2019, 179, 358–372. [Google Scholar] [CrossRef]
- Leva, S.; Mussetta, M.; Ogliari, E. PV module fault diagnosis based on microconverters and day-ahead forecast. IEEE Trans. Ind. Electron. 2018, 66, 3928–3937. [Google Scholar] [CrossRef]
- Li, G. Analysis of errors in model parameters for photovoltaic panel. Aust. J. Electr. Electron. Eng. 2019, 16, 281–288. [Google Scholar] [CrossRef]
- Arévalo, P.; Benavides, D.; Tostado-Véliz, M.; Aguado, J.A.; Jurado, F. Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques. Renew. Energy 2023, 205, 366–383. [Google Scholar] [CrossRef]
- Chen, Q.; Li, X.; Zhang, Z.; Zhou, C.; Guo, Z.; Liu, Z.; Zhang, H. Remote sensing of photovoltaic scenarios: Techniques, applications and future directions. Appl. Energy 2023, 333, 120579. [Google Scholar] [CrossRef]
- Joseph, E.; Vijaya Kumar, P.M.; Mahinder Singh, B.S.; Ching, D.L.C. Performance Monitoring Algorithm for Detection of Encapsulation Failures and Cell Corrosion in PV Modules. Energies 2023, 16, 3391. [Google Scholar] [CrossRef]
- Yin, J.; Wang, Y.; Wang, W.; Gao, W. Experimental Verification of Kirchoff First-law in the Manipulation of Sub-Possonian Photocurrent. In Laser Spectroscopy-Proceedings of the XIII International Conference; World Scientific: Singapore, 1998. [Google Scholar]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phs. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Daussy, C.; Guinet, M.; Amy-Klein, A.; Djerroud, K.; Hermier, Y.; Briaudeau, S.; Bordé, C.J.; Chardonnet, C. Direct determination of the Boltzmann constant by an optical method. Phys. Rev. Lett. 2007, 98, 250801. [Google Scholar] [CrossRef] [PubMed]
- Marafona, J.; Chousal, J.A.G. A finite element model of EDM based on the Joule effect. Int. J. Mach. Tools Manuf. 2006, 46, 595–602. [Google Scholar] [CrossRef]
- Ibrahim, H.; Anani, N. Variations of PV module parameters with irradiance and temperature. Energy Procedia 2017, 134, 276–285. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.; Jeffrey, D.J.; Knuth, D.E. On the LambertW function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Rodríguez, J.D.B.; Ramos-Paja, C.A.; Mejía, E.F. Modeling and parameter calculation of photovoltaic fields in irregular weather conditions. Ingeniería 2012, 17, 37–48. [Google Scholar]
- Batzelis, E.I.; Anagnostou, G.; Chakraborty, C.; Pal, B.C. Computation of the Lambert W function in photovoltaic modeling. In Lecture Notes in Electrical Engineering; JB Metzler: Berlin, Germany, 2020; pp. 583–595. [Google Scholar]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Mirjalili, S. Genetic Algorithm. Evolutionary Algorithms and Neural Networks; Springer: Cham, Switzerland, 2019; pp. 43–55. [Google Scholar]
- Mitchell, M.; Crutchfield, J.P.; Das, R. Evolving cellular automata with genetic algorithms: A review of recent work. In Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA’96), Moscow, Russia, 20–22 May 1996; Volume 8. [Google Scholar]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2020, 80, 8091–8126. [Google Scholar] [CrossRef]
- Beligiannis, G.N.; Moschopoulos, C.; Likothanassis, S.D. A genetic algorithm approach to school timetabling. J. Oper. Res. Soc. 2009, 60, 23–42. [Google Scholar] [CrossRef]
- Blickle, T. Tournament selection. Evol. Comput. 2000, 1, 181–186. [Google Scholar]
- Spears, W.M. Adapting crossover in evolutionary algorithms. In Evolutionary Programming; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Manjhi, S.K.; Kumar, R. Performance assessment of K-type, E-type and J-type coaxial thermocouples on the solar light beam for short duration transient measurements. Measurement 2019, 146, 343–355. [Google Scholar] [CrossRef]
- Panambur, K.S.; Desai, S.; Singh, A.K.; Thoben, K. A Hybrid Approach for Digital Representation of Sensors in Real- Time Applications. Procedia Manuf. 2020, 52, 14–19. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Dimara, A.; Anagnostopoulos, C.; Krinidis, S.; Tzovaras, D. Personalized thermal comfort modeling through genetic algorithm. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 4, 1–22. [Google Scholar] [CrossRef]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic algorithm-A literature review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Hassanat, A.; Almohammadi, K.; Alkafaween, E.A.; Abunawas, E.; Hammouri, A.; Prasath, V.S. Choosing mutation and crossover ratios for genetic algorithms—A review with a new dynamic approach. Information 2019, 10, 390. [Google Scholar] [CrossRef]
- Wendorff, A.; Botero, E.; Alonso, J.J. Comparing Different Off-the-Shelf Optimizers’ Performance in Conceptual Aircraft Design. In Proceedings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar]
- Warsito, B.; Yasin, H.; Prahutama, A. Particle swarm optimization versus gradient based methods in optimizing neural network. J. Phys. Conf. Ser. 2019, 1217, 012101. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, G.; Guo, L. Sequential quadratic programming method for nonlinear least squares estimation and its application. Math. Probl. Eng. 2019, 2019, 3087949. [Google Scholar] [CrossRef]
- Gressling, T. 100 Quantum machine learning (QAI). In Data Science in Chemistry; De Gruyter: Berlin, Germany, 2020; pp. 504–510. [Google Scholar]
- Rao, R. Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems. Int. J. Ind. Eng. Comput. 2020, 11, 107–130. [Google Scholar] [CrossRef]
- Shadm, M.B.; Balog, R.S.; Abu-Rub, H. Model predictive control of PV sources in a smart DC distribution system: Maximum power point tracking and droop control. IEEE Trans. Energy Convers. 2014, 29, 913–921. [Google Scholar] [CrossRef]
Parameters | Description | Unit | Parameter Range |
---|---|---|---|
No. of cells connected in parallelVert in a PV module | unitless | >0 | |
No. of cells connected in series in a PV module | unitless | >0 | |
Photo-generated current | A | 0 to saturation current | |
Diode’s saturation current | A | – A/m | |
Diode’s current | A | to 2 | |
Diode’s thermal voltage | V | 2 mV–30 mV | |
Parallel resistance | Ohm | 0 to smallest resistance | |
Series resistance | Ohm | 0.2 Ohm to 20 Ohm | |
k | Boltzmann constant | J/K | J/K |
n | Diode’s ideality factor | unitless | 1–2 |
I | PV’s output current | A | |
V | PV’s output voltage | V | |
P | PV’s output power | W | |
Elementary charge | C | C | |
, | Temperature coefficients for current and voltage, respectively | (C, C) | 0.04 to 0.5, −0.3 to −0.5 |
Solar irradiance and irradiance at standard conditions (1000 W/m) | W/m | <1000 W/m, 1000 W/m | |
Temperature of PV module and standard test values for temperature (25 C) | C | 25 C to 50 C, 25 C | |
Voltage of PV module and standard test values for temperature (25 C) | V | ||
Current of PV module and standard test values for temperature (25 C) | A |
Parameters | Description |
---|---|
mutation probability | |
crossover probability | |
number of chromosomes | |
number of generations | |
decimal precision of the encoded value () | |
fitness function |
Parameters | Descritpion | Unit |
---|---|---|
Output current of installed PVs as calculated from genetic algorithm | A | |
Output voltage of installed PVs as calculated from genetic algorithm | V | |
Output power of installed PVs as calculated from genetic algorithm | W | |
Output current of installed PVs as measured from meters | A | |
Output voltage of installed PVs as measured from meters | V | |
Output power of installed PVs as measured from meters | W |
PV Parameter | Value | Unit |
---|---|---|
n | 0.988 | unitless |
249.678 | Ohm | |
0.384 | Ohm | |
5.17 | A | |
5.178 | A | |
43.99 | V | |
0.00415 | C | |
−0.03616 | C | |
72 | unitless | |
A |
Generation | Population | Execution Time (s) | Convergence |
---|---|---|---|
10 | 10 | 0.052 | 8/10 |
20 | 0.110 | 10/10 | |
40 | 0.229 | 10/10 | |
20 | 10 | 0.112 | 9/10 |
20 | 0.229 | 10/10 | |
40 | 0.477 | 10/10 | |
40 | 10 | 0.237 | 10/10 |
20 | 0.484 | 10/10 | |
40 | 0.971 | 10/10 | |
80 | 10 | 0.479 | 10/10 |
20 | 0.951 | 10/10 | |
40 | 1.928 | 10/10 |
Irradiance 214.72 W/m | ||||
---|---|---|---|---|
Temperature 0 C | ||||
Real Values | Genetic | Error | Accuracy % | |
A | 0.990 | 1.01223 | −0.02223 | 98 |
V | 33.540 | 34.5158 | −0.97582 | 97 |
W | 33.2 | 34.93794 | −1.73794 | 95 |
Temperature 25 C | ||||
A | 1.000 | 1.02635 | −0.02635 | 97 |
V | 29.93. | 32.42978 | −2.49978 | 92 |
W | 29.930 | 33.28430 | −3.35435 | 89 |
Temperature 50 C | ||||
A | 1.025 | 1.03863 | −0.01363 | 99 |
V | 25.810 | 30.37843 | −4.56843 | 82 |
W | 26.450 | 31.5519 | −5.10194 | 81 |
Irradiance 500 W/m | ||||
---|---|---|---|---|
Temperature 0 C | ||||
Real Values | Genetic | Error | Accuracy % | |
A | 2.44 | 2.36011 | 0.07989 | 97 |
V | 38.58 | 37.22944 | 1.35056 | 96 |
W | 94.13 | 87.86557 | 6.26442 | 93 |
Temperature 25 C | ||||
A | 2.41 | 2.39144 | 0.01856 | 99 |
V | 35.96 | 34.8984 | 1.0616 | 97 |
W | 86.81 | 83.45743 | 3.35257 | 96 |
Temperature 50 C | ||||
A | 2.46 | 2.41856 | 0.04144 | 98 |
V | 31.13 | 32.58600 | −1.456 | 95 |
W | 76.57 | 78.81119 | −2.24119 | 97 |
Irradiance 1000 W/m | ||||
---|---|---|---|---|
Temperature 0 C | ||||
Real Values | Genetic | Error | Accuracy % | |
A | 4.800 | 4.74547 | 0.05453 | 99 |
V | 40.110 | 39.28088 | 0.82912 | 98 |
W | 192.550 | 186.40623 | 6.14376 | 97 |
Temperature 25 C | ||||
A | 4.830 | 4.77966 | 0.05034 | 99 |
V | 36.220 | 36.63148 | −0.41148 | 99 |
W | 174.984 | 175.08602 | −0.10202 | 100 |
Temperature 50 C | ||||
A | 4.790 | 4.82245 | −0.03245 | 99 |
V | 32.530 | 33.81646 | −1.28646 | 96 |
W | 155.820 | 163.07818 | −7.25818 | 95 |
Test Results | |||||||
---|---|---|---|---|---|---|---|
Irradiance 1000 W/m2 | |||||||
Temperature 0 °C | |||||||
Real Values | GA | SLSQP | Cobyla | Rao-1 | Rao-2 | Rao-3 | |
Impp | 4.80 | 4.75 | 4.72 | 3.82 | 4.74 | 4.73 | 4.73 |
Vmpp | 40.11 | 39.28 | 39.49 | 43.65 | 39.45 | 39.48 | 39.48 |
Pmpp | 192.55 | 186.41 | 186.48 | 166.79 | 187.20 | 186.50 | 186.50 |
Temperature 25 °C | |||||||
Impp | 4.83 | 4.78 | 4.78 | 3.30 | 4.80 | 4.79 | 4.79 |
Vmpp | 36.22 | 36.63 | 36.63 | 42.12 | 36.59 | 36.62 | 36.62 |
Pmpp | 174.98 | 175.09 | 175.10 | 138.78 | 175.02 | 175.08 | 175.08 |
Temperature 50 °C | |||||||
Impp | 4.79 | 4.82 | 4.82 | 2.87 | 4.81 | 4.82 | 4.82 |
Vmpp | 32.53 | 33.82 | 33.82 | 40.68 | 33.78 | 33.81 | 33.81 |
Pmpp | 155.82 | 163.08 | 163.10 | 116.88 | 162.95 | 163.09 | 163.09 |
Temperature (C) | GA | SLSQP | Cobyla | Rao-1 | Rao-2 | Rao-3 |
---|---|---|---|---|---|---|
0 | 100 | 105 | 108 | 120 | 106 | 107 |
25 | 90 | 95 | 95 | 115 | 96 | 97 |
50 | 98 | 105 | 105 | 105 | 104 | 105 |
GA % | SLSQP % | Cobyla % | Rao-1 % | Rao-2 % | Rao-3 % | |
---|---|---|---|---|---|---|
Temperature 0 °C | ||||||
Impp | 99 | 98 | 80 | 99 | 99 | 99 |
Vmpp | 98 | 98 | 92 | 98 | 98 | 98 |
Pmpp | 97 | 96 | 86 | 96 | 96 | 96 |
Temperature 25 °C | ||||||
Impp | 99 | 99 | 69 | 98 | 98 | 98 |
Vmpp | 99 | 99 | 84 | 99 | 99 | 99 |
Pmpp | 100 | 100 | 80 | 100 | 100 | 100 |
Temperature 50 °C | ||||||
Impp | 99 | 99 | 60 | 99 | 99 | 99 |
Vmpp | 96 | 96 | 75 | 96 | 96 | 96 |
Pmpp | 95 | 95 | 75 | 96 | 96 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimara, A.; Papaioannou, A.; Grigoropoulos, K.; Triantafyllidis, D.; Tzitzios, I.; Anagnostopoulos, C.-N.; Krinidis, S.; Ioannidis, D.; Tzovaras, D. A Novel Real-Time PV Error Handling Exploiting Evolutionary-Based Optimization. Appl. Sci. 2023, 13, 12682. https://doi.org/10.3390/app132312682
Dimara A, Papaioannou A, Grigoropoulos K, Triantafyllidis D, Tzitzios I, Anagnostopoulos C-N, Krinidis S, Ioannidis D, Tzovaras D. A Novel Real-Time PV Error Handling Exploiting Evolutionary-Based Optimization. Applied Sciences. 2023; 13(23):12682. https://doi.org/10.3390/app132312682
Chicago/Turabian StyleDimara, Asimina, Alexios Papaioannou, Konstantinos Grigoropoulos, Dimitris Triantafyllidis, Ioannis Tzitzios, Christos-Nikolaos Anagnostopoulos, Stelios Krinidis, Dimosthenis Ioannidis, and Dimitrios Tzovaras. 2023. "A Novel Real-Time PV Error Handling Exploiting Evolutionary-Based Optimization" Applied Sciences 13, no. 23: 12682. https://doi.org/10.3390/app132312682
APA StyleDimara, A., Papaioannou, A., Grigoropoulos, K., Triantafyllidis, D., Tzitzios, I., Anagnostopoulos, C. -N., Krinidis, S., Ioannidis, D., & Tzovaras, D. (2023). A Novel Real-Time PV Error Handling Exploiting Evolutionary-Based Optimization. Applied Sciences, 13(23), 12682. https://doi.org/10.3390/app132312682