Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Leu, M.C.; Mazumder, J.; Donmez, A. Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations. J. Manuf. Sci. Eng. 2015, 137, 014001. [Google Scholar] [CrossRef]
- Dey, A.; Roan Eagle, I.N.; Yodo, N. A Review on Filament Materials for Fused Filament Fabrication. J. Manuf. Mater. Process. 2021, 5, 69. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Ninikas, K.; Petousis, M.; Vidakis, N.; Vaxevanidis, N. An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design. Mater. Manuf. Process. 2021, 36, 1544–1553. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Chaidas, D.; Vidakis, N.; Salonitis, K.; Vaxevanidis, N.M. Key parameters controlling surface quality and dimensional accuracy: A critical review of FFF process. Mater. Manuf. Process. 2022, 37, 963–984. [Google Scholar] [CrossRef]
- Mushtaq, R.T.; Iqbal, A.; Wang, Y.; Khan, A.M.; Petra, M.I. Advancing PLA 3D printing with laser polishing: Improving mechanical strength, sustainability, and surface quality. Crystals 2023, 13, 626. [Google Scholar] [CrossRef]
- Mushtaq, R.T.; Iqbal, A.; Wang, Y.; Khan, A.M.; Bakar, M.S.A. Parametric optimization of 3D printing process hybridized with laser-polished PETG polymer. Polym. Test. 2023, 125, 108129. [Google Scholar] [CrossRef]
- Mushtaq, R.T.; Wang, Y.; Khan, A.M.; Rehman, M.; Li, X.; Sharma, S. A post-processing laser polishing method to improve process performance of 3D printed new Industrial Nylon-6 polymer. J. Manuf. Process. 2023, 101, 546–560. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3d printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Dupaix, R.B.; Boyce, M.C. Finite strain behavior of poly (ethylene terephthalate) (PET) and poly (ethylene terephthalate)-glycol (PETG). Polymer 2005, 46, 4827–4838. [Google Scholar] [CrossRef]
- Dupaix, R.B.; Krishnan, D. A Constitutive Model for Strain-Induced Crystallization in Poly (ethylene terephthalate) (PET) during Finite Strain Load-Hold Simulations. J. Eng. Mater. Technol. 2005, 128, 28–33. [Google Scholar] [CrossRef]
- Vikneswaran, S.K.; Nagarajan, P.; Dinesh, S.K.; Senthil Kumar, K.L.; Megalingam, A. Investigation of the tensile behaviour of Polylactic Acid, Acrylonitrile Butadiene Styrene, and Polyethylene Terephthalate Glycol materials. Mater. Today Proc. 2022, 66, 1093–1098. [Google Scholar] [CrossRef]
- Valvez, S.; Silva, A.P.; Reis, P.N.B. Optimization of Printing Parameters to Maximize the Mechanical Properties of 3D-Printed PETG-Based Parts. Polymers 2022, 14, 2564. [Google Scholar] [CrossRef] [PubMed]
- Dolzyk, G.; Jung, S. Tensile and Fatigue Analysis of 3D-Printed Polyethylene Terephthalate Glycol. J. Fail. Anal. Prev. 2019, 19, 511–518. [Google Scholar] [CrossRef]
- Hsueh, M.H.; Lai, C.J.; Wang, S.H.; Zeng, Y.S.; Hsieh, C.H.; Pan, C.Y.; Huang, W.C. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling. Polymers 2021, 13, 1758. [Google Scholar] [CrossRef] [PubMed]
- Grasso, M.; Azzouz, L.; Ruiz-Hincapie, P.; Zarrelli, M.; Ren, G. Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens. Rapid Prototyp. J. 2018, 24, 1337–1346. [Google Scholar] [CrossRef]
- Durgashyam, K.; Indra Reddy, M.; Balakrishna, A.; Satyanarayana, K. Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method. Mater. Today Proc. 2019, 18, 2052–2059. [Google Scholar] [CrossRef]
- Travieso-Rodriguez, J.A.; Jerez-Mesa, R.; Llumà, J.; Traver-Ramos, O.; Gomez-Gras, G.; Roa Rovira, J.J. Mechanical Properties of 3D-Printing Polylactic Acid Parts subjected to Bending Stress and Fatigue Testing. Materials 2019, 12, 3859. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gras, G.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Lluma-Fuentes, J. Fatigue performance of fused filament fabrication PLA specimens. Mater. Des. 2018, 140, 278–285. [Google Scholar] [CrossRef]
- Wendt, C.; Fernández-Vidal, S.R.; Gómez-Parra, A.G.; Batista, M.; Marcos, M. Processing and Quality Evaluation of Additive Manufacturing Monolayer Specimens. Adv. Mater. Sci. Eng. 2016, 2016, 5780693. [Google Scholar] [CrossRef]
- Mansour, M.; Tsongas, K.; Tzetzis, D.; Antoniadis, A. Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers. Polym.-Plast. Technol. Eng. 2018, 57, 1715–1725. [Google Scholar] [CrossRef]
- Valvez, S.; Silva, A.P.; Reis, P.N.B. Compressive Behaviour of 3D-Printed PETG Composites. Aerospace 2022, 9, 124. [Google Scholar] [CrossRef]
- Kasmi, S.; Ginoux, G.; Allaoui, S.; Alix, S. Investigation of 3D printing strategy on the mechanical performance of coextruded continuous carbon fiber reinforced PETG. J. Appl. Polym. Sci. 2021, 138, 50955. [Google Scholar] [CrossRef]
- Bex, G.J.P.; Ingenhut, B.L.J.; Ten Cate, T.; Sezen, M.; Ozkoc, G. Sustainable approach to produce 3D-printed continuous carbon fiber composites: “A comparison of virgin and recycled PETG”. Polym. Compos. 2021, 42, 4253–4264. [Google Scholar] [CrossRef]
- Latko-Durałek, P.; Dydek, K.; Boczkowska, A. Thermal, Rheological and Mechanical Properties of PETG/rPETG Blends. J. Polym. Environ. 2019, 27, 2600–2606. [Google Scholar] [CrossRef]
- Kumar, K.S.; Soundararajan, R.; Shanthosh, G.; Saravanakumar, P.; Ratteesh, M. Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM. Mater. Today Proc. 2021, 45, 2186–2191. [Google Scholar] [CrossRef]
- Alarifi, I.M. Mechanical properties and numerical simulation of FDM 3D printed PETG/Carbon composite unit structures. J. Mater. Res. Technol. 2023, 23, 656–669. [Google Scholar] [CrossRef]
- Alarifi, I.M. PETG/carbon fiber composites with different structures produced by 3D printing. Polym. Test. 2023, 120, 107949. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D695-15; Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International: West Conshohocken, PA, USA, 2023.
- Batista, M.; del Sol, I.; Salguero, J.; Piñero, D.; Vázquez, J.M. Product Design: Study of the Tribological Properties of FDM PETG Products. In Advances in Design Engineering III, INGEGRAF 2022. Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Batista, M.; Blanco, D.; del Sol, I.; Piñero, D.; Vazquez-Martínez, J.M. Tribological characterization of Fused Deposition Modelling parts. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1193, 012068. [Google Scholar] [CrossRef]
- Yadav, A.; Chauhan, P.; Babbar, A.; Kumar, R.; Ranjan, N.; Chohan, J.; Kumar, R.; Gupta, M. Fused filament fabrication: A state-of-the-art review of the technology, materials, properties and defects. Int. J. Interact. Des. Manuf. 2022, 17, 2867–2889. [Google Scholar] [CrossRef]
- Tran, T.Q.; Ng, F.L.; Kai, J.T.Y.; Feih, S.; Nai, M.L.S. Tensile Strength Enhancement of Fused Filament Fabrication Printed Parts: A Review of Process Improvement Approaches and Respective Impact. Addit. Manuf. 2022, 54, 102724. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, B.; Loh, C. Fatigue behavior and mean stress effect on thermoplastic polymers and composites. Frat. Ed Integrità Strutt. 2018, 46, 150–157. [Google Scholar] [CrossRef]
- Rodriguez, J.G.D.; Comas, A.D.P.; Herrera, J.D.S. Notch sensitivity study in u-notched polymers built by Additive Manufacturing (AM). Frat. Ed Integrità Strutt. 2023, 66, 127–139. [Google Scholar] [CrossRef]
- Moradi, M.; Rezayat, M.; Rozhbiany, F.A.R.; Meiabadi, S.; Casalino, G.; Shamsborhan, M.; Bijoy, A.; Chakkingal, S.; Lawrence, M.; Mohammed, N.; et al. Correlation between Infill Percentages, Layer Width, and Mechanical Properties in Fused Deposition Modelling of Poly-Lactic Acid 3D Printing. Machines 2023, 11, 950. [Google Scholar] [CrossRef]
- Valerga, A.P.; Batista, M.; Salguero, J.; Girot, F. Influence of PLA Filament Conditions on Characteristics of FDM Parts. Materials 2018, 11, 1322. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, J.; Leng, J.; Cardon, L.; Zhang, J. Reinforced and toughened PP/PS composites prepared by Fused Filament Fabrication (FFF) with in-situ microfibril and shish-kebab structure. Polymer 2020, 186, 121971. [Google Scholar] [CrossRef]
- García, E.; Núñez, P.J.; Caminero, M.A.; Chacón, J.M.; Kamarthi, S. Effects of carbon fibre reinforcement on the geometric properties of PETG-based filament using FFF additive manufacturing. Compos. Part B Eng. 2022, 235, 109766. [Google Scholar] [CrossRef]
- Djokikj, J.; Tuteski, O.; Doncheva, E.; Hadjieva, B. Experimental investigation on mechanical properties of FFF parts using different materials. Procedia Struct. Integr. 2022, 41, 670–679. [Google Scholar] [CrossRef]
Material | T (°C) | Layer Thickness (mm) | Extrusion Velocity (mm/s) | Overlap | Bed Temperature (°C) | Infill | Top |
---|---|---|---|---|---|---|---|
PETG + CF | 220 | 0.15/0.25/0.35 | 60 | 55% | 80 | Concentric (100%) | Concentric |
230 | 0.15/0.25/0.35 | ||||||
240 | 0.15/0.25/0.35 |
DF | Adj SC | Adj MC | F-Value | p-Value | |
Average thickness | |||||
Model | 8 | 0.34689 | 0.043361 | 77.66 | 0.000 |
Material | 1 | 0.99236 | 0.992357 | 1777.26 | 0.000 |
Model-Material | 8 | 0.43558 | 0.054447 | 97.51 | 0.000 |
Error | 36 | 0.02010 | 0.000558 | ||
Total | 53 | 1.79492 | |||
DF | Adj SC | Adj MC | F-Value | p-Value | |
Average width | |||||
Model | 8 | 5.5941 | 0.69926 | 144.68 | 0.000 |
Material | 1 | 2.7650 | 2.76504 | 572.08 | 0.000 |
Model-Material | 8 | 2.5772 | 0.32215 | 66.65 | 0.000 |
Error | 36 | 0.1740 | 0.00483 | ||
Total | 53 | 11.1103 | |||
DF | Adj SC | Adj MC | F-Value | p-Value | |
Thickness Deviation | |||||
Model | 8 | 0.34689 | 0.043361 | 77.66 | 0.000 |
Material | 1 | 0.99236 | 0.992357 | 1777.26 | 0.000 |
Model-Material | 8 | 0.43558 | 0.054447 | 97.51 | 0.000 |
Error | 36 | 0.02010 | 0.000558 | ||
Total | 53 | 1.79492 | |||
DF | Adj SC | Adj MC | F-Value | p-Value | |
Width Deviation | |||||
Model | 8 | 5.5941 | 0.69926 | 144.68 | 0.000 |
Material | 1 | 2.7650 | 2.76504 | 572.08 | 0.000 |
Model-Material | 8 | 2.5772 | 0.32215 | 66.65 | 0.000 |
Error | 36 | 0.1740 | 0.00483 | ||
Total | 53 | 11.1103 | |||
DF | Adj SC | Adj MC | F-Value | p-Value | |
Force | |||||
Model | 8 | 90,846 | 11,356 | 6.14 | 0.000 |
Material | 1 | 407,554 | 407,554 | 220.51 | 0.000 |
Model-Material | 8 | 123,841 | 15,480 | 8.38 | 0.000 |
Error | 36 | 66,535 | 1848 | ||
Total | 53 | 688,776 | |||
DF | Adj SC | Adj MC | F-Value | p-Value | |
Displacement | |||||
Model | 8 | 0.6778 | 0.0847 | 1.29 | 0.277 |
Material | 1 | 13.9657 | 13.9657 | 213.40 | 0.000 |
Model-Material | 8 | 1.2086 | 0.1511 | 2.31 | 0.041 |
Error | 36 | 2.3559 | 0.0654 | ||
Total | 53 | 18.2080 | |||
DF | Adj SC | Adj MC | F-Value | p-Value | |
Stress | |||||
Model | 8 | 842.7 | 105.33 | 20.43 | 0.000 |
Material | 1 | 1848.8 | 1848.80 | 358.58 | 0.000 |
Model-Material | 8 | 899.7 | 112.46 | 21.81 | 0.000 |
Error | 36 | 185.6 | 5.16 | ||
Total | 53 | 3776.7 | |||
DF | Adj SC | Adj MC | F-Value | p-Value | |
Strain | |||||
Model | 8 | 0.3719 | 0.04649 | 1.29 | 0.277 |
Material | 1 | 7.6629 | 7.66293 | 213.40 | 0.000 |
Model-Material | 8 | 0.6631 | 0.08289 | 2.31 | 0.041 |
Error | 36 | 1.2927 | 0.03591 | ||
Total | 53 | 9.9906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, M.; Lagomazzini, J.M.; Ramirez-Peña, M.; Vazquez-Martinez, J.M. Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications. Appl. Sci. 2023, 13, 12701. https://doi.org/10.3390/app132312701
Batista M, Lagomazzini JM, Ramirez-Peña M, Vazquez-Martinez JM. Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications. Applied Sciences. 2023; 13(23):12701. https://doi.org/10.3390/app132312701
Chicago/Turabian StyleBatista, Moises, Jose Miguel Lagomazzini, Magdalena Ramirez-Peña, and Juan Manuel Vazquez-Martinez. 2023. "Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications" Applied Sciences 13, no. 23: 12701. https://doi.org/10.3390/app132312701
APA StyleBatista, M., Lagomazzini, J. M., Ramirez-Peña, M., & Vazquez-Martinez, J. M. (2023). Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications. Applied Sciences, 13(23), 12701. https://doi.org/10.3390/app132312701