Research on Quantization Parameter Decision Scheme for High Efficiency Video Coding
Abstract
:1. Introduction
2. Research Significance
3. Materials and Methods
3.1. Initialization
3.2. Mutation
3.3. Crossover
3.4. Selection
4. Results
4.1. Experimental Environment and Evaluation Indicators
4.2. Comparison of Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Yan, N.; Li, Z.; Liu, S.; Li, H. λ-Domain Perceptual Rate Control for 360-Degree Video Compression. IEEE J. Sel. Top. Signal Process. 2019, 14, 130–145. [Google Scholar] [CrossRef]
- Rijkse, K.H. 263: Video coding for low-bit-rate communication. IEEE Commun. Mag. 1996, 34, 42–45. [Google Scholar] [CrossRef]
- Gardos, T.R. H.263+: The new itu-t recommendation for video coding at low bit rates. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Seattle, WA, USA, 15 May 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 6, pp. 3793–3796. [Google Scholar]
- Richardson, I.E.H. 264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Yu, M.; Lakshman, H.; Girod, B. A framework to evaluate omnidirectional video coding schemes. In Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality, Fukuoka, Japan, 29 September–3 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 31–36. [Google Scholar]
- He, Y.; Xiu, X.; Ye, Y.; Zakharchenko, V.; Alshina, E.; Dsouza, A. JVET 360Lib Software Manual; Document ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11. Joint Video Explor. Team, ITU-T: Geneva, Switzerland, 2016. Available online: https://jvet.hhi.fraunhofer.de/svn/svn_360Lib/trunk/ (accessed on 17 July 2017).
- Duanmu, F.; He, Y.; Xiu, X.; Hanhart, P.; Ye, Y.; Wang, Y. Hybrid cubemap projection format for 360-degree video coding. In Proceedings of the 2018 Data Compression Conference, Snowbird, UT, USA, 27–30 March 2018; IEEE: Piscataway, NJ, USA, 2018; p. 404. [Google Scholar]
- Du, J.; Kim, B.C.; Zhao, D. Cost performance as a stochastic process: EAC projection by Markov Chain simulation. J. Constr. Eng. Manag. 2016, 142, 04016009. [Google Scholar] [CrossRef]
- Yu, M.; Lakshman, H.; Girod, B. Content adaptive representations of omnidirectional videos for cinematic virtual reality. In Proceedings of the 3rd International Workshop on Immersive Media Experiences, Brisbane, Australia, 26–30 October 2015; pp. 1–6. [Google Scholar]
- Lee, S.H.; Kim, S.T.; Yip, E.; Choi, B.D.; Song, J.; Ko, S.J. Omnidirectional video coding using latitude adaptive down-sampling and pixel rearrangement. Electron. Lett. 2017, 53, 655–657. [Google Scholar] [CrossRef]
- Racapé, F.; Galpin, F.; Rath, G.; Francois, E. AHG8: Adaptive QP for 360 video coding. Signal Process. 2018, 146, 66–78. [Google Scholar]
- Zhu, S.; Ma, K.K. A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. Image Process. 2000, 9, 287–290. [Google Scholar] [CrossRef]
- Tang, X.; Dai, S.; Cai, C. An analysis of TZSearch algorithm in JMVC. In Proceedings of the 2010 International Conference on Green Circuits and Systems, Shanghai, China, 21–23 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 516–520. [Google Scholar]
- Helle, P.; Oudin, S.; Bross, B.; Marpe, D.; Bici, M.O.; Ugur, K.; Jung, J.; Clare, G.; Wiegand, T. Block merging for quadtree-based partitioning in HEVC. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1720–1731. [Google Scholar] [CrossRef]
- Oudin, S.; Helle, P.; Stegemann, J.; Bartnik, C.; Bross, B.; Marpe, D.; Schwarz, H.; Wiegand, T. Block merging for quadtree-based video coding. In Proceedings of the 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 11–15 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Purnachand, N.; Alves, L.N.; Navarro, A. Fast motion estimation algorithm for HEVC. In Proceedings of the 2012 IEEE Second International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 3–5 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 34–37. [Google Scholar]
- Laroche, G.; Jung, J.; Pesquet-Popescu, B. RD optimized coding for motion vector predictor selection. IEEE Trans. Circuits Syst. Video Technol. 2008, 18, 1247–1257. [Google Scholar] [CrossRef]
- Schwarz, H.; Nguyen, T.; Marpe, D.; Wiegand, T. Hybrid video coding with trellis-coded quantization. In Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 182–191. [Google Scholar]
- Pfaff, J.; Schwarz, H.; Marpe, D.; Bross, B.; De-Luxán-Hernández, S.; Helle, P.; Helmrich, C.R.; Hinz, T.; Lim, W.Q.; Ma, J.; et al. Video compression using generalized binary partitioning, trellis coded quantization, perceptually optimized encoding, and advanced prediction and transform coding. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1281–1295. [Google Scholar] [CrossRef]
- Ki, S.; Kim, M.; Ko, H. Just-noticeable-quantization-distortion based preprocessing for perceptual video coding. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Bernatin, T.; Sundari, G. Video compression based on Hybrid transform and quantization with Huffman coding for video codec. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 452–456. [Google Scholar]
- Liu, Y.; Sidaty, N.; Hamidouche, W.; Déforges, O.; Valenzise, G.; Zerman, E. An adaptive perceptual quantization method for HDR video coding. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1027–1031. [Google Scholar]
- Abrahamsson, A. Variance Adaptive Quantization and Adaptive Offset Selection in High Efficiency Video Coding. IEEE Trans. Circuits Syst. Video Technol. 2016, 15, 1037–1074. [Google Scholar]
- Chuang, T.-D.; Chen, C.-Y.; Chang, Y.-L.; Huang, Y.-W.; Lei, S. AhG Quantization: Sub-LCU Delta QP; JCTVC-E051; Joint Collaborative Team on Video Coding: Geneva, Switzerland, 2011. [Google Scholar]
- Mo, Y.; Xiong, J.; Chen, J.; Xu, F. Quantization matrix coding for high efficiency video coding. In Proceedings of the Advances on Digital Television and Wireless Multimedia Communications: 9th International Forum on Digital TV and Wireless Multimedia Communication, IFTC 2012, Shanghai, China, 9–10 November 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 244–249. [Google Scholar]
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Lee, H.; Yang, S.; Park, Y.; Jeon, B. Fast quantization method with simplified rate–distortion optimized quantization for an HEVC encoder. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 107–116. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, Z.; Chen, C.W. Adaptive quantization parameter cascading in HEVC hierarchical coding. IEEE Trans. Image Process. 2016, 25, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.W.; An, J.; Huang, H.; Li, X.; Hsiang, S.T.; Zhang, K.; Gao, H.; Ma, J.; Chubach, O. Block partitioning structure in the VVC standard. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3818–3833. [Google Scholar]
- Dong, X.; Shen, L.; Yu, M.; Yang, H. Fast intra mode decision algorithm for versatile video coding. IEEE Trans. Multimed. 2021, 24, 400–414. [Google Scholar] [CrossRef]
- Gou, A.; Sun, H.; Katto, J.; Li, T.; Zeng, X.; Fan, Y. Fast intra mode decision for VVC based on histogram of oriented gradient. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3028–3032. [Google Scholar]
- Park, S.H.; Kang, J.W. Fast affine motion estimation for versatile video coding (VVC) encoding. IEEE Access 2019, 7, 158075–158084. [Google Scholar] [CrossRef]
- Mahdavi, H.; Azgin, H.; Hamzaoglu, I. Approximate versatile video coding fractional interpolation filters and their hardware implementations. IEEE Trans. Consum. Electron. 2021, 67, 186–194. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2010, 15, 4–31. [Google Scholar] [CrossRef]
- Ali, M.M.; Törn, A. Population set-based global optimization algorithms: Some modifications and numerical studies. Comput. Oper. Res. 2004, 31, 1703–1725. [Google Scholar] [CrossRef]
- Liu, J.; Lampinen, J. A fuzzy adaptive differential evolution algorithm. Soft Comput. 2005, 9, 448–462. [Google Scholar] [CrossRef]
- Mezura-Montes, E.; Velázquez-Reyes, J.; Coello Coello, C.A. A comparative study of differential evolution variants for global optimization. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 485–492. [Google Scholar]
- Huffman, D.A. A method for the construction of minimum-redundancy codes. Proc. IRE 1952, 40, 1098–1101. [Google Scholar] [CrossRef]
- Potter, M.A.; Jong, K.A.D. A cooperative coevolutionary approach to function optimization. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Jerusalem, Israel, 9–14 October 1994; Springer: Berlin/Heidelberg, Germany, 1994; pp. 249–257. [Google Scholar]
- Sofge, D.; De Jong, K.; Schultz, A. A blended population approach to cooperative coevolution for decomposition of complex problems. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 1, pp. 413–418. [Google Scholar]
- Liu, Y.; Yao, X.; Zhao, Q.; Higuchi, T. Scaling up fast evolutionary programming with cooperative coevolution. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Republic of Korea, 27–30 May 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 2, pp. 1101–1108. [Google Scholar]
- Gao, Z.; Pan, Z.; Gao, J. A new highly efficient differential evolution scheme and its application to waveform inversion. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1702–1706. [Google Scholar]
- Foo, C.Y.; Rajendran, P.; Aswini, N.; Raja, V.; Natarajan, E.; Ang, C.K. A Fast-Compressive Tracking Integrated with Differential Evolution to Optimize Object Tracking Performance. In Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 26–30 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Sun, T.; Wen, J.; Gong, J. Personalized Learning Resource Recommendation using Differential Evolution-Based Graph Neural Network: A Graph SAGE Approach. In Proceedings of the 2023 4th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), Nanjing, China, 18–20 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 636–639. [Google Scholar]
- Lampinen, J.; Zelinka, I. On stagnation of the differential evolution algorithm. In Proceedings of the MENDEL, Brno, Czech Republic, 7–10 March 2000; pp. 76–83. [Google Scholar]
- Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. A Stat. Mech. Its Appl. 2012, 391, 2193–2196. [Google Scholar] [CrossRef]
- Blickle, T. Tournament selection. Evol. Comput. 2000, 1, 181–186. [Google Scholar]
- Boyce, J.; Alshina, E.; Abbas, A.; Ye, Y. JVET common test conditions and evaluation procedures for 360 degreevideo. In Proceedings of the Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IECJTC1/SC29/WG11.JVET-D1030, Torino, IT, USA, 13–21 July 2017. [Google Scholar]
- Gisle, B. Calculation of Average PSNR Differences between RD curves. In Proceedings of the ITU-T SG16/Q6, 13th VCEG Meeting, Austin, TX, USA, 2–4 April 2001; pp. 210–214. [Google Scholar]
Test Sequence | Resolution | Frame Rate | Frame Number |
---|---|---|---|
AerialCity | 3840 × 1920 | 30 | 100 |
DrivingInCity | 3840 × 1920 | 30 | 100 |
DrivingInCountry | 3840 × 1920 | 30 | 100 |
PoleVault | 3840 × 1920 | 30 | 100 |
Parameter | Value |
---|---|
Population size | 50 |
Iteration number | 50 |
Mutation factor | rand (0.1, 0.9) |
Crossover rate | 0.5 |
Terminal condition | max iteration number |
Video Sequence | Target Bitrate | YUV-PSNR (dB) | Actual Bitrate (kbps) | ||
---|---|---|---|---|---|
Proposed | HM-16.20 | Proposed | HM-16.20 | ||
AerialCity | 2000 | 29.94 | 29.89 | 1999.57 | 2005.86 |
4000 | 31.79 | 31.86 | 4000.35 | 4005.72 | |
8000 | 34.23 | 34.16 | 7998.11 | 8009.88 | |
10,000 | 35.01 | 34.98 | 9994.78 | 9995.82 | |
DrivingInCity | 2000 | 31.56 | 31.50 | 1998.12 | 1999.98 |
4000 | 34.13 | 33.89 | 3998.26 | 3991.92 | |
8000 | 36.68 | 36.59 | 7999.07 | 7987.32 | |
10,000 | 37.58 | 37.52 | 9986 | 9974.28 | |
DrivingInCountry | 2000 | 31.08 | 30.68 | 1999.65 | 1997.76 |
4000 | 31.85 | 31.95 | 3978.79 | 3962.52 | |
8000 | 33.47 | 33.37 | 7990.43 | 7991.52 | |
10,000 | 33.98 | 33.94 | 9995.03 | 9992.88 | |
2000 | 26.81 | 26.81 | 2655.14 | 2676.00 | |
PoleVault_le | 4000 | 27.82 | 27.78 | 3987.43 | 4008.00 |
8000 | 30.06 | 29.93 | 7990.38 | 8010.84 | |
10,000 | 30.68 | 30.66 | 9965.52 | 10,018.08 |
Video Sequence | BD-Rate (%) | BD-PSNR (dB) |
---|---|---|
AerialCity | 0.11 | −0.01 |
DrivingInCity | −3.33 | 0.17 |
DrivingInCountry | −1.14 | 0.03 |
PoleVault_le | −3.07 | 0.09 |
Average | −1.86 | 0.07 |
Video Sequence | Target Bitrate (kbps) | HM-16.20 | Proposed | ||
---|---|---|---|---|---|
Actual Bitrate (kbps) | Mismatch (%) | Actual Bitrate (kbps) | Mismatch (%) | ||
AerialCity | 2000 | 2005.86 | 0.0293 | 1999.57 | 0.0002 |
4000 | 4005.72 | 0.0143 | 4000.35 | 0.0001 | |
8000 | 8009.88 | 0.0012 | 7998.11 | 0.0002 | |
10,000 | 9995.82 | 0.0004 | 9994.78 | 0.0005 | |
DrivingInCity | 2000 | 1999.98 | 0.0000 | 1998.12 | 0.0009 |
4000 | 3991.92 | 0.0020 | 3998.26 | 0.0004 | |
8000 | 7987.32 | 0.0016 | 7999.07 | 0.0001 | |
10,000 | 9974.28 | 0.0026 | 9986 | 0.0014 | |
DrivingInCountry | 2000 | 1997.76 | 0.0011 | 1999.65 | 0.0002 |
4000 | 3962.52 | 0.0094 | 3978.79 | 0.0028 | |
8000 | 7991.52 | 0.0011 | 7990.43 | 0.0012 | |
10,000 | 9992.88 | 0.0007 | 9995.03 | 0.0005 | |
PoleVault_le | 2000 | 2676.00 | 0.3380 | 1995.14 | 0.0024 |
4000 | 4008.00 | 0.0020 | 3987.43 | 0.0031 | |
8000 | 8010.84 | 0.0014 | 7990.38 | 0.0012 | |
10,000 | 10,018.08 | 0.0018 | 9965.52 | 0.0034 | |
Average | — | — | 0.0254 | — | 0.0016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Chai, Y. Research on Quantization Parameter Decision Scheme for High Efficiency Video Coding. Appl. Sci. 2023, 13, 12758. https://doi.org/10.3390/app132312758
Jin X, Chai Y. Research on Quantization Parameter Decision Scheme for High Efficiency Video Coding. Applied Sciences. 2023; 13(23):12758. https://doi.org/10.3390/app132312758
Chicago/Turabian StyleJin, Xuesong, and Yansong Chai. 2023. "Research on Quantization Parameter Decision Scheme for High Efficiency Video Coding" Applied Sciences 13, no. 23: 12758. https://doi.org/10.3390/app132312758
APA StyleJin, X., & Chai, Y. (2023). Research on Quantization Parameter Decision Scheme for High Efficiency Video Coding. Applied Sciences, 13(23), 12758. https://doi.org/10.3390/app132312758