Meta-Heuristic Optimization and Comparison for Battery Pack Thermal Systems Using Simulink
Abstract
:Featured Application
Abstract
1. Introduction
2. Numerical Methods for Simulink
2.1. Liquid Cooling Module
2.2. Battery Configuration
3. Meta-Heuristic Methods
3.1. Particle Swarm Optimization
3.2. Genetic Algorithm
3.3. Applications of Optimization Approaches
- Tinit: initial battery temperature.
- Radiator.solution.glycol: the glycol volume fraction.
- Pump.omega: the pump revolution speed.
- Pump.response.delay: a variable used to regulate the pump speed, incorporating an unknown value as the denominator coefficient.
- Pump.displacement: the volume of fluid that a pump moves during a single cycle or revolution.
4. Results and Discussion
4.1. Comparison between PSO and GA
4.2. Optimized Results Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a | time constant |
c1 | particle cognition coefficient |
c2 | social collaboration coefficient |
cp | heat capacity, J/K |
C1 | capacitor, F |
Em | open-circuit voltage, V |
f(x) | objective function |
g | random number by Gaussian distribution |
g(x) | constraint function |
h | heat transfer coefficient, W/m2K |
LB | lower bound |
I1 | current for resistor R1, A |
pg | global best position, m |
pi | particle best position, m |
Ppump | pump power, kW |
Q | heat power, W |
r1 | random number |
r2 | random number |
R | electrical resistance of battery pack, Ω |
R1 | resistor, Ω |
R0 | series resistor, Ω |
T | temperature, K |
Tfinal | battery final temperature at 2500 s, K |
Tinit | battery initial temperature, K |
Tset | battery target temperature, K |
t | iteration |
UB | upper bound |
vij | particle velocity, m |
V | cell voltage, V |
Vi | variable vector |
V1 | cell voltage for resistor R1, V |
w | inertia weight |
xij | particle position, m |
References
- Taborek, J.; Hewitt, G.; Afgan, N. Heat Exchangers—Theory and Practice; Hemisphere Publishing: New York, NY, USA, 1983; Volume 1. [Google Scholar]
- Moon, J.H.; Lee, K.H.; Kim, H.; Han, D.I. Thermal-Economic Optimization of Plate–Fin Heat Exchanger Using Improved Gaussian Quantum-Behaved Particle Swarm Algorithm. Mathematics 2022, 10, 2527. [Google Scholar] [CrossRef]
- Kim, J.; Kowal, J. Development of a Matlab/Simulink Model for Monitoring Cell State-of-Health and State-of-Charge via Impedance of Lithium-Ion Battery Cells. Batteries 2022, 8, 8. [Google Scholar] [CrossRef]
- Battisti, R.; Claumann, C.A.; Manenti, F.; Machado, R.A.F.; Marangoni, C. Dynamic modeling with experimental validation and control of a two-phase closed thermosyphon as heat supplier of a novel pilot-scale falling film distillation unit. Comput. Chem. Eng. 2020, 143, 107078. [Google Scholar] [CrossRef]
- Huria, T.; Ceraolo, M.; Gazzarri, J.; Jackey, R. High Fidelity Electrical Model with Thermal Dependence for Characterization and Simulation of High Power Lithium Battery Cells. In Proceedings of the IEEE International Electric Vehicle Conference (IEVC), Greenville, NC, USA, 4–8 March 2012; p. 12689518. [Google Scholar]
- Xu, H.; Zhang, X.; Xiang, G.; Li, H. Optimization of liquid cooling and heat dissipation system of lithium-ion battery packs of automobile. Case Stud. Therm. Eng. 2021, 26, 101012. [Google Scholar] [CrossRef]
- Mei, N.; Xu, X.; Li, R. Heat Dissipation Analysis on the Liquid Cooling System Coupled with a Flat Heat Pipe of a Lithium-Ion Battery. ACS Omega 2020, 5, 17431–17441. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Qian, Z.; Kuang, Y.; Li, Y. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Appl. Therm. Eng. 2017, 123, 1514–1522. [Google Scholar] [CrossRef]
- Song, L.; Zhang, H.; Yang, C. Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module. Int. J. Heat Mass Transf. 2019, 133, 827–841. [Google Scholar] [CrossRef]
- Jilte, R.D.; Kumar, R. Numerical investigation on cooling performance of Li-ion battery thermal management system at high galvanostatic discharge. Eng. Sci. Technol. Int. J. 2018, 21, 957–969. [Google Scholar] [CrossRef]
- Sun, H.; Wang, X.; Tossan, B.; Dixon, R. Three-dimensional thermal modeling of a lithium-ion battery pack. J. Power Sources 2012, 206, 349–356. [Google Scholar] [CrossRef]
- Smith, J.; Singh, R.; Hinterberger, M.; Mochizuki, M. Battery thermal management system for electric vehicle using heat pipes. Int. J. Therm. Sci. 2018, 134, 517–529. [Google Scholar] [CrossRef]
- Fayaz, H.; Afzal, A.; Samee, A.D.M.; Soudagar, M.E.M.; Akram, N.; Mujtaba, M.A.; Jilte, R.D.; Islam, M.T.; Agbulut, U.; Saleel, C.A. Optimization of Thermal and Structural Design in Lithium-Ion Batteries to Obtain Energy Efficient Battery Thermal Management System (BTMS): A Critical Review. Arch. Comput. Methods Eng. 2021, 29, 129–194. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, K.; Han, S. Reliable Online Parameter Identification of Li-Ion Batteries in Battery Management Systems Using the Condition Number of the Error Covariance Matrix. IEEE Access 2020, 8, 189106–189114. [Google Scholar] [CrossRef]
- Afzal, A.; Ramis, M.K. Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics. J. Energy Storage 2020, 32, 101815. [Google Scholar] [CrossRef]
- Sadeghzadeh, H.; Ehyaei, M.A.; Rosen, M.A. Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms. Energy Convers. Manag. 2015, 93, 84–91. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y. Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm. Energy Convers. Manag. 2015, 101, 126–135. [Google Scholar] [CrossRef]
- Prashanth, N.A.; Sujatha, P. Comparison Between PSO and Genetic Algorithms and for Optimizing of Permanent Magnet Synchronous Generator (PMSG) Machine Design. Int. J. Eng. Technol. 2018, 7, 77–81. [Google Scholar] [CrossRef]
- Jyothiprakash, K.H.; Harshith, J.; Sharan, A.; Seetharamu, K.N.; Krishnegowda, Y.T. Thermodynamic Optimization of Three-Fluid Cross-Flow Heat Exchanger Using GA and PSO Heuristics. Therm. Sci. Eng. Prog. 2019, 11, 289–301. [Google Scholar] [CrossRef]
- Ghanei, A.; Assareh, E.; Biglari, M.; Ghanbarzadeh, A.; Noghrehabadi, A.R. Thermal-economic multi-objective optimization of shell and tube heat exchanger using particle swarm optimization (PSO). Heat Mass Transf. 2014, 50, 1375–1384. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Lee, K.H. Application of repulsive particle swarm optimization for inverse heat conduction problem—Parameter estimations of unknown plane heat source. Int. J. Heat Mass Transf. 2019, 137, 268–279. [Google Scholar] [CrossRef]
- Turgut, O.E.; Çoban, M.T. Thermal design of spiral heat exchangers and heat pipes through global best algorithm. Heat Mass Transf. 2016, 53, 899–916. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, J.; Wang, J.; Ding, Y.; Tian, N.; Liao, X.; Xu, W. Optimizing the codon usage of synthetic gene with QPSO algorithm. J. Theor. Biol. 2008, 254, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Gazzarri, J.; Onori, S.; Habibi, S.; Jackey, R.; Rzemien, K.; Tjong, J.; LeSage, J. Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications. SAE Int. J. Altern. Powertrains 2015, 4, 233–247. [Google Scholar] [CrossRef]
- Cho, G.Y.; Choi, J.W.; Park, J.H.; Cha, S.W. Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles. Int. J. Automot. Technol. 2014, 15, 795–803. [Google Scholar] [CrossRef]
- Kim, J.; Shin, Y. Temperature Management of EV Battery Cell by Optimal Operation Scheduling. Trans. Korean Soc. Automot. Eng. 2019, 27, 509–519. [Google Scholar] [CrossRef]
- Verbrugge, M.; Tate, E. Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena. J. Power Sources 2004, 126, 236–249. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, H.; Ning, Z.; Mu, Z.; Sun, C. Comparative Research on RC Equivalent Circuit Models for Lithium-Ion Batteries of Electric Vehicles. Appl. Sci. 2017, 7, 1002. [Google Scholar] [CrossRef]
- Ceraolo, M.; Lutzemberger, G.; Huria, T. Experimentally-Determined Models for High-Power Lithium Batteries; SAE Technical Paper Series; SAE: Detroit, MI, USA, 2011; p. 1365. [Google Scholar]
- Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; Jiaqiang, E.; Zhu, H.; Chen, J.; Wen, M.; Yin, H. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl. Therm. Eng. 2018, 142, 10–29. [Google Scholar] [CrossRef]
- Kim, D.Y.; Lee, B.; Kim, M.; Moon, J.H. Thermal assessment of lithium-ion battery pack system with heat pipe assisted passive cooling using Simulink. Therm. Sci. Eng. Prog. 2023, 46, 102230. [Google Scholar] [CrossRef]
- Tran, M.-K.; DaCosta, A.; Mevawalla, A.; Panchal, S.; Fowler, M. Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA. Batteries 2021, 7, 51. [Google Scholar] [CrossRef]
- David, L.; Reddy, T.B. Handbook of Batteries; McGraw-Hill: New York, NY, USA, 2002; Volume 1, p. 1514. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Too, J.; Abdullah, A.R.; Mohd Saad, N. A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection. Inform 2019, 6, 21. [Google Scholar] [CrossRef]
- Coelho, L.d.S. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst. Appl. 2010, 37, 1676–1683. [Google Scholar] [CrossRef]
- Miri, I.; Fotouhi, A.; Ewin, N. Electric vehicle energy consumption modelling and estimation—A case study. Int. J. Energy Res. 2020, 45, 501–520. [Google Scholar] [CrossRef]
- Patel, V.K.; Savsani, V.J.; Tawhid, M.A. Thermal System Optimization; Springer: Amsterdam, The Netherlands, 2019; Volume 1. [Google Scholar]
- Mancuso, G.; Langone, M.; Di Maggio, R.; Toscano, A.; Andreottola, G. Effect of hydrodynamic cavitation on flocs structure in sewage sludge to increase stabilization for efficient and safe reuse in agriculture. Bioremediat. J. 2021, 26, 41–52. [Google Scholar] [CrossRef]
R0/SOC | 5 °C | 20 °C | 40 °C | R1/SOC | 5 °C | 20 °C | 40 °C |
0 | 0.0117 Ω | 0.0085 Ω | 0.009 Ω | 0 | 0.0109 Ω | 0.0029 Ω | 0.0013 Ω |
10% | 0.011 Ω | 0.0085 Ω | 0.009 Ω | 10% | 0.0069 Ω | 0.0024 Ω | 0.0012 Ω |
25% | 0.0114 Ω | 0.0087 Ω | 0.0092 Ω | 25% | 0.0047 Ω | 0.0026 Ω | 0.0013 Ω |
50% | 0.0107 Ω | 0.0082 Ω | 0.0088 Ω | 50% | 0.0034 Ω | 0.0016 Ω | 0.001 Ω |
75% | 0.0107 Ω | 0.0083 Ω | 0.0091 Ω | 75% | 0.0033 Ω | 0.0023 Ω | 0.0014 Ω |
100% | 0.0116 Ω | 0.0085 Ω | 0.0089 Ω | 100% | 0.0028 Ω | 0.0017 Ω | 0.0011 Ω |
Em/SOC | 5 °C | 20 °C | 40 °C | C1/SOC | 5 °C | 20 °C | 40 °C |
0 | 3.497 V | 3.506 V | 3.515 V | 0 | 1913 F | 12,447 F | 30,609 F |
10% | 3.552 V | 3.566 V | 3.565 V | 10% | 4625.7 F | 18,872 F | 32,995 F |
25% | 3.618 V | 3.634 V | 3.640 V | 25% | 23,306 F | 40,764 F | 47,535 F |
50% | 3.707 V | 3.713 V | 3.721 V | 50% | 10,736 F | 18,721 F | 26,325 F |
75% | 3.913 V | 3.926 V | 3.938 V | 75% | 18,036 F | 33,630 F | 48,274 F |
100% | 4.192 V | 4.193 V | 4.193 V | 100% | 9023 F | 23,394 F | 30,606 F |
LB | UB | |
---|---|---|
1. Initial battery temperature | 25 °C | 40 °C |
2. Radiator.solution.glycol | 0.1 (10%) | 0.9 (90%) |
3. Pump.omega | 1000 rpm | 4000 rpm |
4. Pump.response.delay | 10 | 40 |
5. Pump.displacement | 10 m | 30 m |
Particle Swarm Optimization | Genetic Algorithm |
---|---|
1. Initialize parameters | 2. Initialize parameters |
num_particles = 100; num_dimensions = 2; num_iterations = 100; % Initialize particle positions and velocities for i = 1:num_particles for j = 1:num_dimensions particle(i).position(j) = random_value(); % Initialize with a random value particle(i).velocity(j) = random_value(); % Initialize with a random value sim(‘sscfluids_ev_battery_cooling’) end particle(i).best_position = particle(i).position; end global_best = particle(1).best_position; | num_particles = 100; num_generations = 1000; num_dimensions = 2; % Initialize population for i = 1:num_particles for j = 1:num_dimensions population(i).gene(j) = random_value(); % Initialize with a random value sim(‘sscfluids_ev_battery_cooling’) end population(i).fitness = fitness_function(population(i).gene); end |
3. Main loop | 4. Main loop |
for iter = 1:num_iterations for i = 1:num_particles % Update velocity for j = 1:num_dimensions particle(i).velocity(j) = inertia_weight * particle(i).velocity(j) + c1 * rand() * (particle(i).best_position(j)—particle(i).position(j)) + c2 * rand() * (global_best(j)—particle(i).position(j)); End % Update position for j = 1:num_dimensions particle(i).position(j) = particle(i).position(j) + particle(i).velocity(j); sim(‘sscfluids_ev_battery_cooling’) end % Update personal best if fitness_function(particle(i).position) < fitness_function(particle(i).best_position) particle(i).best_position = particle(i).position; end % Update global best if fitness_function(particle(i).best_position) < fitness_function(global_best) global_best = particle(i).best position; end end end | for gen = 1:num_generations % Selection for i = 1:num_particles parent1 = tournament_selection(population); parent2 = tournament_selection(population); % Update position by crossover [child1, child2] = crossover(parent1, parent2); % Mutation child1 = mutate(child1); % Function, needs to be defined child2 = mutate(child2); % Fitness Evaluation sim(‘sscfluids_ev_battery_cooling’) child1.fitness = fitness_function(child1.gene); child2.fitness = fitness_function(child2.gene); % Replacement population = replace_worst(population, child1, child2); end end |
Initial Condition | PSO | GA | |
---|---|---|---|
1. Initial battery temperature | 30 °C | 40 °C | 40 °C |
2. Radiator.solution.glycol | 0.5 (50%) | 0.1 (10%) | 0.1 (10%) |
3. Pump.omega | 4000 rpm | 1000 rpm | 1000 rpm |
4. Pump.response.delay | 20 | 20.5 | 19 |
5. Pump.displacement | 20 m | 12.7 m | 19.8 m |
Fitness | 1.22 × 10−4 kW/K | 0.356 × 10−3 kW/K | 0.406 × 10−3 kW/K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.Y.; Kang, M.-S.; Lee, K.H.; Moon, J.H. Meta-Heuristic Optimization and Comparison for Battery Pack Thermal Systems Using Simulink. Appl. Sci. 2023, 13, 12803. https://doi.org/10.3390/app132312803
Kim DY, Kang M-S, Lee KH, Moon JH. Meta-Heuristic Optimization and Comparison for Battery Pack Thermal Systems Using Simulink. Applied Sciences. 2023; 13(23):12803. https://doi.org/10.3390/app132312803
Chicago/Turabian StyleKim, Dae Yun, Min-Soo Kang, Kyun Ho Lee, and Joo Hyun Moon. 2023. "Meta-Heuristic Optimization and Comparison for Battery Pack Thermal Systems Using Simulink" Applied Sciences 13, no. 23: 12803. https://doi.org/10.3390/app132312803
APA StyleKim, D. Y., Kang, M. -S., Lee, K. H., & Moon, J. H. (2023). Meta-Heuristic Optimization and Comparison for Battery Pack Thermal Systems Using Simulink. Applied Sciences, 13(23), 12803. https://doi.org/10.3390/app132312803