The Landing Biomechanics in Youth Female Handball Players Does Not Change When Applying a Specific Model of Game and Weekly Training Workload
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Anthropometry
2.2.2. Landing Mechanics
2.2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Changes in Post-Game Landing Biomechanics
4.2. Changes in Landing Biomechanics during the Competitive Microcycle
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aasheim, C.; Stavenes, H.; Andersson, S.H.; Engbretsen, L.; Clarsen, B. Prevalence and burden of overuse injuries in elite junior handball. BMJ Open Sport Exerc. Med. 2018, 4, e000391. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Fuchs, P.; Fusco, A.; Fuchs, P.; Bell, J.W.; von Duvillard, S.P. Physical performance in elite Male and female team-handball players. Int. J. Sports Physiol. Perform. 2019, 14, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Finkenzeller, T.; Würth, S.; Von Duvillard, S.P. Individual and team performance in team-handball: A review. J. Sports Sci. Med. 2014, 13, 808–816. [Google Scholar] [PubMed]
- Moller, M.; Attermann, J.; Myklebust, G.; Wedderkopp, N. Injury risk in Danish youth and senior elite handball using a new SMS text messages approach. Br. J. Sports Med. 2012, 46, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Clemente, F.M.; Beato, M.; Castillo, D. Injury profile of male and female senior and youth handball players: A systematic review. Int. J. Env. Res. Public Health 2020, 17, 3925. [Google Scholar] [CrossRef] [PubMed]
- Chia, L.; De Oliveira Silva, D.; Whalan, M.; McKay, M.J.; Sullivan, J.; Fuller, C.W.; Pappas, E. Non-contact anterior cruciate ligament injury epidemiology in team-ball sports: A systematic review with meta-analysis by sex, age, sport, participation level, and exposure type. Sports Med. 2022, 52, 2447–2467. [Google Scholar] [CrossRef] [PubMed]
- Reckling, C.; Zantop, T.; Petersen, W. Epidemiology of injuries in juvenile handball players. Sportverletzung-Sportschaden 2003, 17, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Giroto, N.; Hespanhol Junior, L.C.; Gomes, M.R.C.; Lopes, A.D. Incidence and risk factors of injuries in Brazilian elite handball players: A prospective cohort study. Scand. J. Med. Sci. Sports 2017, 27, 195–202. [Google Scholar] [CrossRef]
- Myklebust, G.; Skjølberg, A.; Bahr, R. ACL injury incidence in female handball 10 years after the Norwegian ACL prevention study: Important lessons learned. Br. J. Sports Med. 2013, 47, 476–479. [Google Scholar] [CrossRef]
- Junge, A.; Engebretsen, L.; Mountjoy, M.L.; Alonso, J.M.; Renström, P.A.F.H.; Aubry, M.J.; Dvorak, J. Sports injuries during the Summer Olympic Games 2008. Am. J. Sports Med. 2009, 37, 2165–2172. [Google Scholar] [CrossRef]
- Póvoas, S.C.A.; Ascensão, A.A.M.R.; Magalhães, J.; Seabra, A.F.T.; Krustrup, P.; Soares, J.M.C.; Rebelo, A.N.C. Analysis of fatigue development during elite male handball matches. J. Strength Cond. Res. 2014, 28, 2640–2648. [Google Scholar] [CrossRef]
- Pedley, J.S.; Lloyd, R.S.; Read, P.J.; Moore, I.S.; De Ste Croix, M.; Myer, G.D.; Oliver, J.L. Utility of kinetic and kinematic jumping and landing variables as predictors of injury risk: A systematic review. J. Sci. Sport Exerc. 2020, 2, 287–304. [Google Scholar] [CrossRef]
- Piry, H.; Fallahi, A.; Kordi, R.; Rajabi, R.; Rahimi, M.; Yosefi, M. Handball injuries in elite Asian players. World Appl. Sci. J. 2011, 14, 1559–1564. [Google Scholar]
- Vila, H.; Barreiro, A.; Ayán, C.; Antúnez, A.; Ferragut, C. The most common handball injuries: A systematic review. Int. J. Env. Res. Public Health 2022, 19, 10688. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.A.; Arnold, B.L.; Perrin, D.H.; Gansneder, B.M.; Carcia, C.R.; Granata, K.P. Fatigue, vertical leg stiffness, and stiffness control strategies in males and females. J. Athl. Train. 2006, 41, 294–304. [Google Scholar] [PubMed]
- Lehnert, M.; Croix, M.S.; Zaatar, A.; Lipinska, P.; Stastny, P. Effect of a simulated match on lower limb neuromuscular performance in youth footballers—A two year longitudinal study. Int. J. Env. Res. Public Health 2020, 17, 8579. [Google Scholar] [CrossRef] [PubMed]
- Wesley, C.A.; Aronson, P.A.; Docherty, C.L. Lower extremity landing biomechanics in both sexes after a functional exercise protocol. J. Athl. Train. 2015, 50, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Bencke, J.; Aagaard, P.; Zebis, M.K. Muscle activation during ACL injury risk movements in young female athletes: A narrative review. Front. Physiol. 2018, 9, 445. [Google Scholar] [CrossRef]
- Gokeler, A.; Eppinga, P.; Dijkstra, P.U.; Welling, W.; Padua, D.A.; Otten, E.; Benjaminse, A. Effect of fatigue on landing performance assessed with the landing error scoring system (LESS) in patients after ACL reconstruction. A pilot study. Int. J. Sports Phys. Ther. 2014, 9, 302–311. [Google Scholar]
- Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef]
- Morris, R.; Emmonds, S.; Jones, B.; Myers, T.D.; Clarke, N.D.; Lake, J.; Ellis, M.; Singleton, D.; Roe, G.; Till, K. Seasonal changes in physical qualities of elite youth soccer players according to maturity status: Comparisons with aged matched controls. Sci. Med. Footb. 2018, 2, 272–280. [Google Scholar] [CrossRef]
- Brink, M.S.; Nederhof, E.; Visscher, C.; Schmikli, S.L.; Lemmink, K.A.P.M. Monitoring load, recovery, and performance in young elite soccer players. J. Strength Cond. Res. 2010, 24, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Li, F.X. Accumulated workloads and the acute: Chronic workload ratio relate to injury risk in elite youth football players. Br. J. Sports Med. 2017, 51, 452–459. [Google Scholar] [CrossRef]
- De Ste Croix, M.B.A.; Priestley, A.M.; Lloyd, R.S.; Oliver, J.L. ACL injury risk in elite female youth soccer: Changes in neuromuscular control of the knee following soccer-specific fatigue. Scand. J. Med. Sci. Sports 2015, 25, e531–e538. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.D.; Denton, K.; Lloyd, R.S.; Oliver, J.L.; De Ste Croix, M. The impact of soccer match play on the muscle damage response in youth female athletes. Int. J. Sports Med. 2018, 39, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, M.; De Ste Croix, M.; Šťastný, P.; Maixnerová, E.; Zaatar, A.; Botek, M.; Vařeková, R.; Hůlka, K.; Petr, M.; Elfmark, M.; et al. The Influence of Fatigue on Injury Risk in Male Youth Soccer; Palacky University Olomouc: Olomouc, Czech Republic, 2019. [Google Scholar]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of noncontact anterior cruciate ligament injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.R.; Smith, M.D.; Pennuto, A.P.; Stiffler, M.R.; Olson, M.E. Jump-landing mechanics after anterior cruciate ligament reconstruction: A landing error scoring system study. J. Athl. Train. 2014, 49, 435–441. [Google Scholar] [CrossRef]
- Christopher, R.; Brandt, C.; Benjamin-Damon, N. Systematic review of screening tools for common soccer injuries and their risk factors. S. Afr. J. Physiother. 2021, 77, a1496. [Google Scholar] [CrossRef]
- Lisman, P.; Wilder, J.N.; Berenbach, J.; Jiao, E.; Hansberger, B. The relationship between Landing Error Scoring System performance and injury in female collegiate athletes. Int. J. Sports Phys. Ther. 2021, 16, 1415–1425. [Google Scholar] [CrossRef]
- Padua, D.A.; DiStefano, L.J.; Beutler, A.I.; De La Motte, S.J.; DiStefano, M.J.; Marshall, S.W. The Landing Error Scoring System as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J. Athl. Train. 2015, 50, 589–595. [Google Scholar] [CrossRef]
- Lopes, T.J.A.; Simic, M.; Myer, G.D.; Ford, K.R.; Hewett, T.E.; Pappas, E. The effects of injury prevention programs on the biomechanics of landing tasks: A systematic review with meta-analysis. Am. J. Sports Med. 2018, 46, 1492–1499. [Google Scholar] [CrossRef]
- Bruton, M.R.; O’Dwyer, N.; Adams, R. Sex differences in the kinematics and neuromuscular control of landing: Biological, environmental and sociocultural factors. J. Electromyogr. Kinesiol. 2013, 23, 747–758. [Google Scholar] [CrossRef]
- Fox, A.S.; Bonacci, J.; McLean, S.G.; Spittle, M.; Saunders, N. What is normal? Female lower limb kinematic profiles during athletic tasks used to examine anterior cruciate ligament injury risk: A systematic review. Sports Med. 2014, 44, 815–832. [Google Scholar] [CrossRef]
- Whiting, W.C.; Zernicke, R.F. Biomechanics of Musculoskeletal Injury, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Cadens, M.; Planas-Anzano, A.; Peirau-Terés, X.; Benet-Vigo, A.; Fort-Vanmeerhaeghe, A. Neuromuscular and biomechanical jumping and landing deficits in young female handball players. Biology 2023, 12, 134. [Google Scholar] [CrossRef]
- Chappell, J.D.; Creighton, R.A.; Giuliani, C.; Yu, B.; Garrett, W.E. Kinematics and electromyography of landing preparation in vertical stop-jump: Risks for noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2007, 35, 235–241. [Google Scholar] [CrossRef]
- Hanzlíková, I.; Hébert-Losier, K. Is the Landing Error Scoring System reliable and valid? A systematic review. Sports Health 2020, 12, 181–188. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J. Orthop. Res. 2016, 34, 1843–1855. [Google Scholar] [CrossRef]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E.; Beutler, A.I. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The jump-ACL Study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef]
- Arboix-Alió, J.; Bishop, C.; Benet, A.; Buscà, B.; Aguilera-Castells, J.; Fort-Vanmeerhaeghe, A. Assessing the magnitude and direction of asymmetry in unilateral jump and change of direction speed tasks in youth female team-sport athletes. J. Hum. Kinet. 2021, 79, 15–27. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- Hanzlíková, I.; Athens, J.; Hébert-Losier, K. Clinical implications of Landing Error Scoring System calculation methods. Phys. Ther. Sport 2020, 44, 61–66. [Google Scholar] [CrossRef]
- Chappell, J.D.; Limpisvasti, O. Effect of a neuromuscular training program on the kinetics and kinematics of jumping tasks. Am. J. Sports Med. 2008, 36, 1081–1086. [Google Scholar] [CrossRef]
- Chappell, J.D.; Yu, B.; Kirkendall, D.T.; Garrett, W.E. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am. J. Sports Med. 2002, 30, 261–267. [Google Scholar] [CrossRef]
- Mok, K.M.; Bahr, R.; Krosshaug, T. The effect of overhead target on the lower limb biomechanics during a vertical drop jump test in elite female athletes. Scand. J. Med. Sci. Sports 2017, 27, 161–166. [Google Scholar] [CrossRef]
- Fox, A.S.; Bonacci, J.; McLean, S.G.; Saunders, N. Efficacy of ACL injury risk screening methods in identifying high-risk landing patterns during a sport-specific task. Scand. J. Med. Sci. Sports 2017, 27, 525–534. [Google Scholar] [CrossRef]
- Krosshaug, T.; Steffen, K.; Kristianslund, E.; Nilstad, A.; Mok, K.-M.; Myklebust, G.; Andersen, T.E.; Holme, I.; Engebretsen, L.; Bahr, R. The vertical drop jump is a poor screening Test for ACL injuries in female elite soccer and handball players: A prospective cohort study of 710 athletes. Am. J. Sports Med. 2016, 44, 874–883. [Google Scholar] [CrossRef]
- Mørtvedt, A.I.; Krosshaug, T.; Bahr, R.; Petushek, E. I spy with my little eye … a knee about to go ‘pop’? Can coaches and sports medicine professionals predict who is at greater risk of ACL rupture? Br. J. Sports Med. 2020, 54, 154–158. [Google Scholar] [CrossRef]
- Lehnert, M.; Krejčí, J.; Janura, M.; Croix, M.D.S. Age-related changes in landing mechanics in elite male youth soccer players: A longitudinal study. Appl. Sci. 2022, 12, 5324. [Google Scholar] [CrossRef]
- Hanzlíková, I.; Hébert-Losier, K. Landing Error Scoring System scores change with knowledge of scoring criteria and prior performance. Phys. Ther. Sport 2020, 46, 155–161. [Google Scholar] [CrossRef]
- De Ste Croix, M.B.A.; Hughes, J.D.; Lloyd, R.S.; Oliver, J.L.; Read, P.J. Leg stiffness in female soccer players: Intersession reliability and the fatiguing effects of soccer-specific exercise. J. Strength Cond. Res. 2017, 31, 3052–3058. [Google Scholar] [CrossRef]
- De Ste Croix, M.; Lehnert, M.; Maixnerova, E.; Zaatar, A.; Svoboda, Z.; Botek, M.; Varekova, R.; Stastny, P. Does maturation influence neuromuscular performance and muscle damage after competitive match-play in youth male soccer players? Eur. J. Sport Sci. 2019, 19, 1130–1139. [Google Scholar] [CrossRef]
- Lehnert, M.; De Ste Croix, M.; Xaverova, Z.; Botek, M.; Varekova, R.; Zaatar, A.; Lastovicka, O.; Stastny, P. Changes in injury risk mechanisms after soccer-specific fatigue in male youth soccer players. J. Hum. Kinet. 2018, 62, 33–42. [Google Scholar] [CrossRef]
- Lehnert, M.; De Ste Croix, M.; Zaatar, A.; Hughes, J.; Varekova, R.; Lastovicka, O. Muscular and neuromuscular control following soccer-specific exercise in male youth: Changes in injury risk mechanisms. Scand. J. Med. Sci. Sports 2017, 27, 975–982. [Google Scholar] [CrossRef]
- Oliver, J.L.; De Ste Croix, M.B.A.; Lloyd, R.S.; Williams, C.A. Altered neuromuscular control of leg stiffness following soccer-specific exercise. Eur. J. Appl. Physiol. 2014, 114, 2241–2249. [Google Scholar] [CrossRef]
- Åkerlund, I.; Waldén, M.; Sonesson, S.; Hägglund, M. Forty-five per cent lower acute injury incidence but no effect on overuse injury prevalence in youth floorball players (aged 12–17 years) who used an injury prevention exercise programme: Two-armed parallel-group cluster randomised controlled trial. Br. J. Sports Med. 2020, 54, 1028–1035. [Google Scholar] [CrossRef]
- Faude, O.; Rössler, R.; Petushek, E.J.; Roth, R.; Zahner, L.; Donath, L. Neuromuscular adaptations to multimodal injury prevention programs in youth sports: A systematic review with meta-analysis of randomized controlled trials. Front. Physiol. 2017, 8, 791. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; Dobbs, I.J.; Wong, M.A.; Kumar, N.T.A.; Lloyd, R.S. The effects of a four-week neuromuscular training program on landing kinematics in pre- and post-peak height velocity male athletes. J. Sci. Sport Exerc. 2021, 3, 37–46. [Google Scholar] [CrossRef]
- Waldén, M.; Hägglund, M.; Werner, J.; Ekstrand, J. The epidemiology of anterior cruciate ligament injury in football (soccer): A review of the literature from a gender-related perspective. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 3–10. [Google Scholar] [CrossRef]
- Beese, M.E.; Joy, E.; Switzler, C.L.; Hicks-Little, C.A. Landing Error Scoring Dystem differences between single-sport and multi-sport female high school-aged athletes. J. Athl. Train. 2015, 50, 806–811. [Google Scholar] [CrossRef]
- Patrek, M.F.; Kernozek, T.W.; Willson, J.D.; Wright, G.A.; Doberstein, S.T. Hip-abductor fatigue and single-leg landing mechanics in women athletes. J. Athl. Train. 2011, 46, 31–42. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Kiefer, A.W.; Ford, K.R. Longitudinal increases in knee abduction moments in females during adolescent growth. Med. Sci. Sports Exerc. 2015, 47, 2579–2585. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Brent, J.L.; Hewett, T.E. An integrated approach to change the outcome part II: Targeted neuromuscular training techniques to reduce identified acl injury risk factors. J. Strength Cond. Res. 2012, 26, 2272–2292. [Google Scholar] [CrossRef] [PubMed]
Special Training Indicators | Minutes per Week |
---|---|
Warm-up | 45 |
Anaerobic endurance | 30 |
Strength | 25 |
Speed | 20 |
Coordination | 20 |
Individual attacking actions | 20 |
Individual defensive actions | 20 |
Offensive combinations | 20 |
Defensive combinations | 20 |
Offensive systems | 10 |
Defensive systems | 10 |
Training game | 30 |
No. | Item | Definition of Error |
---|---|---|
1. | Knee flexion at IC | Knee flexion < 30° |
2. | Hip flexion at IC | Thigh is in line with the trunk (hips not flexed) |
3. | Trunk flexion at IC | Trunk is vertical or extended at the hips (i.e., not flexed) |
4. | Ankle plantar flexion at IC | Heel-to-toe or flat foot landing at initial contact |
5. | Knee valgus at IC | Center of the patella is medial to the midfoot at initial contact |
6. | Lateral trunk flexion at IC | Midline of the trunk is flexed to the left or the right side of the body at initial contact |
7. | Stance width (wide) | Feet are positioned greater than shoulder-width apart (acromion processes) at initial contact |
8. | Stance width (narrow) | Feet are positioned less than shoulder-width apart (acromion processes) at initial contact |
9. | Foot position (toe-in) | Foot is externally rotated more than 30° between initial contact and maximum knee flexion |
10. | Foot position (toe-out) | Foot is internally rotated more than 30° between initial contact and maximum knee flexion |
11. | Symmetric foot contact at IC | One foot lands before the other foot, or one foot lands heel to toe and the other foot lands toe to heel |
12. | Knee flexion displacement | Knee flexes less than 45° between initial contact and maximum knee flexion |
13. | Hip flexion at MKF | Thigh does not flex more on the trunk between initial contact and maximum knee flexion |
14. | Trunk flexion at MKF | Trunk does not flex more between initial contact and maximum knee flexion |
15. | Knee valgus displacement | At the point of maximum medial knee position, the center of the patella is medial to the midfoot |
16. | Joint displacement | Joint displacement: soft (0), average (1), stiff (2) |
17. | Overall impression | Overall impression: excellent (0), average (1), poor (2) |
Measurement | Mean (±SD) | Median |
---|---|---|
Prior to 1st match play | 6.36 ± 0.42 | 6.00 |
Post 1st match play | 6.50 ± 1.16 | 6.00 |
48 h post 1st match play | 5.82 ± 1.15 | 5.50 |
96 h post 1st match play | 6.72 ± 1.09 | 6.50 |
Prior to 2nd match play | 5.95 ± 1.04 | 5.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehnert, M.; Bělka, J.; Hůlka, K.; Sikora, O.; Svoboda, Z. The Landing Biomechanics in Youth Female Handball Players Does Not Change When Applying a Specific Model of Game and Weekly Training Workload. Appl. Sci. 2023, 13, 12847. https://doi.org/10.3390/app132312847
Lehnert M, Bělka J, Hůlka K, Sikora O, Svoboda Z. The Landing Biomechanics in Youth Female Handball Players Does Not Change When Applying a Specific Model of Game and Weekly Training Workload. Applied Sciences. 2023; 13(23):12847. https://doi.org/10.3390/app132312847
Chicago/Turabian StyleLehnert, Michal, Jan Bělka, Karel Hůlka, Ondřej Sikora, and Zdeněk Svoboda. 2023. "The Landing Biomechanics in Youth Female Handball Players Does Not Change When Applying a Specific Model of Game and Weekly Training Workload" Applied Sciences 13, no. 23: 12847. https://doi.org/10.3390/app132312847
APA StyleLehnert, M., Bělka, J., Hůlka, K., Sikora, O., & Svoboda, Z. (2023). The Landing Biomechanics in Youth Female Handball Players Does Not Change When Applying a Specific Model of Game and Weekly Training Workload. Applied Sciences, 13(23), 12847. https://doi.org/10.3390/app132312847