Analysis of Structure–Activity Relationships of Food-Derived DPP IV-Inhibitory Di- and Tripeptides Using Interpretable Descriptors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequences of DPP IV Inhibitors
2.2. Analysis of Structure–Activity Relationship of DPP IV Inhibitors
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Csp3 bonded to 3 C | Number of carbon atoms bound to three carbon atoms with sp3 hybridization (number of tertiary carbon atoms) |
DPP IV | Dipeptidyl peptidase IV (EC 3.4.14.5) |
ERM | Enhanced Replacement Method |
IC50 | Concentration corresponding to half-maximal inhibition of DPP IV |
log IC50 | Logarithm of IC50 |
MW | Molecular weight |
Predicted log IC50 (ERM) | Logarithm of IC50 predicted using model based on enhanced replacement method |
Predicted log IC50 (MW) | Logarithm of IC50 predicted using model based on molecular weight |
QSAR | Quantitative structure–activity relationship |
Ring count 5 member | Number of rings containing five atoms in peptide molecule |
UWM | University of Warmia and Mazury |
References
- Tadesse, S.A.; Emire, S.A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 2020, 6, e04765. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wang, Y.; Yang, Y.; Wang, Z.; Ju, X.; Yuan, J. Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. J. Funct. Foods 2019, 55, 211–219. [Google Scholar] [CrossRef]
- Barati, M.; Javanmardi, F.; Jazayeri, S.M.H.M.; Jabbari, M.; Rahmani, J.; Barati, F.; Nickho, H.; Davoodi, S.H.; Roshanravan, N.; Khaneghah, A.M. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1488–1520. [Google Scholar] [CrossRef] [PubMed]
- Dhar, H.; Verma, S.; Dogra, S.; Katoch, S.; Vij, R.; Singh, G.; Sharma, M. Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit. Rev. Food Sci. Nutr. 2023. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Szymanowska, U.; Karaś, M.; Złotek, U.; Kowalczyk, D. Potential anti-inflammatory and lipase inhibitory peptides generated by in vitro gastrointestinal hydrolysis of heat treated millet grains. CyTA J. Food 2019, 17, 324–333. [Google Scholar] [CrossRef]
- Liu, R.; Cheng, J.; Wu, H. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: A review. Int. J. Mol. Sci. 2019, 20, 463. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, L.; Wu, G.; Liu, T.; Qi, X.; Zhang, H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Crit. Rev. Food Sci. Nutr. 2023. [Google Scholar] [CrossRef]
- Power, O.; Nongonierma, A.; Jakeman, P.; FitzGerald, R. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc. Nutr. Soc. 2014, 73, 34–46. [Google Scholar] [CrossRef]
- Du, Z.; Comer, J.; Li, Y. Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. Trends Anal. Chem. 2023, 162, 117051. [Google Scholar] [CrossRef]
- Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di- and tripeptides. J. Agric. Food Chem. 2006, 54, 732–738. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. Int. J. Mol. Sci. 2011, 12, 3148–3161. [Google Scholar] [CrossRef] [PubMed]
- Pripp, A.H.; Ardö, S. Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides. Food Chem. 2007, 102, 880–888. [Google Scholar] [CrossRef]
- Hrynkiewicz, M.; Iwaniak, A.; Bucholska, J.; Minkiewicz, P.; Darewicz, M. Structure-activity prediction of ACE inhibitory/bitter dipeptides-a chemometric approach based on stepwise regression. Molecules 2019, 24, 950. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://scopus.com (accessed on 20 October 2023).
- Arba, M.; Ruslin, R.; Akib, N.; Yamin, Y.; Ombe, S.; Jessi, J.; Muzakkar, M.Z.; Tjahjono, D.R. Molecular modeling of 4-fluoropyrrolidine-2-carbonitrile and octahydrocyclopenta[b]pyrrole-2-carbonitrile as a Dipeptidyl Peptidase IV (DPP4) Inhibitor. J. App. Pharm. Sci. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Abd El-Karim, S.S.; Anwar, M.M.; Syam, Y.M.; Nael, M.A.; Ali, H.F.; Motaleb, M.A. Rational design and synthesis of new tetralin-sulfonamide derivatives as potent anti-diabetics and DPP-4 inhibitors: 2D &3D QSAR, in vivo radiolabeling and bio distribution studies. Bioorg. Chem. 2018, 81, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Riyaphan, J.; Pham, D.C.; Leong, M.K.; Weng, C.F. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules 2021, 11, 1877. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem. 2018, 244, 340–348. [Google Scholar] [CrossRef]
- Nongonierma, A.; FitzGerald, R. Learnings from quantitative structure activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: A review. RSC Adv. 2016, 79, 6. [Google Scholar] [CrossRef]
- Kęska, P.; Stadnik, J. Structure-activity relationships study on biological activity of peptides as dipeptidyl peptidase IV inhibitors by chemometric modeling. Chem. Biol. Drug Des. 2020, 95, 291–301. [Google Scholar] [CrossRef]
- Charoenkwan, P.; Kanthawong, K.; Nantasenamat, C.; Hasan, M.; Shoombuatong, W. iDPPIV-SCM: A sequence-based predictor for identifying and analyzing dipeptidyl peptidase IV (DPP-IV) inhibitory peptides using a scoring card method. J. Proteome Res. 2020, 19, 4125–4136. [Google Scholar] [CrossRef]
- Charoenkwan, P.; Nantasenamat, C.; Hasan, M.; Moni, M.A.; Lio’, P.; Manavalan, B.; Shoombuatong, W. StackDPPIV: A novel computational approach for accurate prediction of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Methods 2022, 204, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed]
- Mercader, A.G.; Duchowicz, P.R.; Fernández, F.M.; Castro, E.A. Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories. J. Chem. Inf. Model. 2010, 50, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Pino, F.; Millan-Linares, M.C.; Montserrat-de-la-Paz, S. Strengths and limitations of in silico tools to assess physicochemical properties, bioactivity, and bioavailability of food-derived peptides. Trends Food Sci. Technol. 2023, 138, 433–440. [Google Scholar] [CrossRef]
- Franke, R.; Gruska, A. General Introduction to QSAR. In Quantitative Structure-Activity Relationship (QSAR) Models of Mutagens and Carcinogens; Benigni, R., Ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2003; pp. 1–40. [Google Scholar]
- Sivaraman, G.; Jackson, N.E.; Sanchez, B.; Vázquez-Mayagoitia, Á.; Aspuru-Guzik, A.; Vishwanath, V.; de Pablo, J. A machine learning workflow for molecular analysis: Application to melting points. Mach. LearnSci. Technol. 2020, 1, 025015. [Google Scholar] [CrossRef]
- Scikit-Learn Integration Package for Apache Spark. Available online: https://github.com/databricks/spark-sklearn (accessed on 20 October 2023).
- Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010, 29, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.G.; Quintana-Ascencio, P.F. A solution to minimum sample size for regressions. PLoS ONE 2020, 15, e0229345. [Google Scholar] [CrossRef]
- Piir, G.; Kahn, I.; García-Sosa, A.T.; Sild, S.; Ahte, P.; Maran, U. Best Practices for QSAR Model Reporting: Physical and Chemical Properties, Ecotoxicity, Environmental Fate, Human Health, and Toxicokinetics Endpoints. Environ. Health Perspect. 2018, 126, 126001. [Google Scholar] [CrossRef]
- Cargnelutti Filho, A.; Toebe, M. Reference sample size for multiple regression in corn. Pesqui. Agropec. Bras. 2020, 55, e01400. [Google Scholar] [CrossRef]
- Yadav, D.K.; Khan, F.; Negi, A.S. Pharmacophore modeling, molecular docking, QSAR, and in silico ADMET studies of gallic acid derivatives for immunomodulatory activity. J. Mol. Model. 2012, 18, 2513–2525. [Google Scholar] [CrossRef]
- Kiralj, R.; Ferreira, M. Basic Validation Procedures for Regression Models in QSAR and QSPR Studies: Theory and Application. J. Braz. Chem. Soc. 2008, 20, 770–787. [Google Scholar] [CrossRef]
- Cawley, G.; Talbot, N. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. J. Mach. Learn. Res. 2010, 11, 2079–2107. [Google Scholar]
- Hosseini, R.; Newlands, N.K.; Dean, C.B.; Takemura, A. Statistical modeling of soil moisture, integrating satellite remote-sensing (SAR) and ground-based data. Remote Sens. 2015, 7, 2752–2780. [Google Scholar] [CrossRef]
- Paneth, A.; Płonka, W.; Paneth, P. Assessment of nonnucleoside inhibitors binding to HIV-1 reverse transcriptase using HYDE scoring. Pharmaceuticals 2019, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.T.; Blum, L.C.; van Deursen, R.; Reymond, J.-L. Classification of organic molecules by Molecular Quantum Numbers. ChemMedChem 2009, 4, 1803–1805. [Google Scholar] [CrossRef]
- Andrescu, T.; Mushkarov, O.; Stoyanov, L. Geometric Problems in Maxima and Minima; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2006; pp. vii–ixi. Available online: https://www.isinj.com/mt-usamo/Geometric%20Problems%20on%20Maxima%20and%20Minima%20-%20Titu%20Andreescu,%20Oleg%20Mushkarov,%20Luchezar%20Stoyanov.pdf (accessed on 18 October 2023).
- Guasch, L.; Ojeda, M.J.; González-Abuín, N.; Sala, E.; Cereto-Massagué, A.; Mulero, M.; Valls, C.; Pinent, M. Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part I): Virtual screening and activity assays. PLoS ONE 2012, 7, e44971. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Santos, G.B.; Ganesan, A.; Emery, F.S. Oral administration of peptide-based drugs: Beyond Lipinski’s Rule. ChemMedChem 2016, 11, 2245–2251. [Google Scholar] [CrossRef]
- Capecchi, A.; Awale, M.; Probst, D.; Reymond, J.-L. PubChem and ChEMBL beyond Lipinski. Mol. Inf. 2019, 38, 1900016. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. J. Food Biochem. 2019, 43, e12451. [Google Scholar] [CrossRef]
- Soares, T.A.; Nunes-Alves, A.; Mazollari, A.; Ruggiu, F.; Wei, G.-W.; Merz, K. The (re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods. J. Chem. Inf. Model. 2022, 62, 5317–5320. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.-B.; Wang, T.-H.; Feng, Y.; Jiang, G.-Y. QSAR studies of angiotensin converting enzyme inhibitors using CoMFA, CoMSIA and molecular docking: Scientific paper. J. Serb. Chem. Soc. 2021, 86, 469–482. [Google Scholar] [CrossRef]
- Iwaniak, A.; Hrynkiewicz, M.; Bucholska, J.; Minkiewicz, P.; Darewicz, M. Understanding the nature of bitter-taste di- and tripeptides derived from food proteins based on chemometric analysis. J. Food Biochem. 2019, 43, e12500. [Google Scholar] [CrossRef] [PubMed]
Parameter | DPP IV Inhibitors | |
---|---|---|
Dipeptides | Tripeptides | |
R2 | 0.782 | 0.829 |
Degrees-of-freedom adjusted R2 | 0.755 | 0.798 |
CVR2 | 0.737 | 0.710 |
Average error | 0.255 | 0.209 |
RMSEC | 0.343 | 0.296 |
RMSECV | 0.377 | 0.386 |
F-statistics | 28.773 | 26.228 |
p-value | 0.0000 | 0.0000 |
α | 0.05 | 0.05 |
DPP IV inhibitors | Dipeptides | Descriptor | Normalized Coefficient | Partial-F |
hydrogen donor partial surface area/total accessible surface area/MW | 0.7559 | 51.3355 | ||
guanidine count/MW | 0.5086 | 14.5636 | ||
nitrogen count2 | −1.0000 | 53.3368 | ||
methyl count2 | −0.3414 | 9.8481 | ||
ring count 5 member2 | 0.6070 | 28.3351 | ||
Tripeptides | Csp3 bonded to 3 C | 0.0053 | 3.4655 | |
methyl count2 | −0.0091 | 11.0810 | ||
ln(molecular weight) | 1.0000 | 20.7152 | ||
1.0/molecular weight | 0.3657 | 24.0262 | ||
sqrt(molecular weight) | −0.6413 | 19.3041 |
No.1 | Sequence | ID 2 | IC50 | Log IC50 | Predicted log IC50 3 |
---|---|---|---|---|---|
1 | AA | 8637 | 9400.00 | 3.97 | 3.77 |
2 | AL | 8559 | 882.13 | 2.95 | 2.72 |
3 | AP | 3177 | 7950.00 | 3.90 | 3.71 |
4 | EK | 8558 | 3216.75 | 3.51 | 3.00 |
5 | FL | 8555 | 399.58 | 2.60 | 2.33 |
6 | FP | 8506 | 363.00 | 2.56 | 2.99 |
7 | GL | 8561 | 2615.03 | 3.42 | 3.37 |
8 | GP | 3169 | 9690.00 | 3.99 | 4.12 |
9 | HL | 8557 | 143.19 | 2.16 | 1.71 |
10 | HP | 8520 | 2820.00 | 3.45 | 3.14 |
11 | IP | 8501 | 410.00 | 2.61 | 2.96 |
12 | KA | 3174 | 6270.00 | 3.80 | 3.53 |
13 | KP | 8519 | 2540.00 | 3.41 | 3.54 |
14 | LP | 3180 | 2370.00 | 3.38 | 2.98 |
15 | LW | 8688 | 993.40 | 3.00 | 2.13 |
16 | ML | 8832 | 91.00 | 1.96 | 2.11 |
17 | MM | 8833 | 93.00 | 1.97 | 2.33 |
18 | MP | 3171 | 870.00 | 2.94 | 3.02 |
19 | MW | 8690 | 1691.40 | 3.23 | 2.25 |
20 | NH | 8844 | 69.00 | 1.84 | 1.85 |
21 | PP | 3170 | 5860.00 | 3.77 | 4.01 |
22 | RP | 8518 | 2240.00 | 3.35 | 3.44 |
23 | SL | 8560 | 2517.08 | 3.40 | 3.16 |
24 | SP | 8505 | 5980.00 | 3.78 | 3.97 |
25 | TH | 8902 | 49.00 | 1.69 | 2.21 |
26 | TP | 8503 | 2370.00 | 3.38 | 3.52 |
27 | TW | 8913 | 84.00 | 1.92 | 2.55 |
28 | VA | 3172 | 168.24 | 2.23 | 2.72 |
29 | VL | 8922 | 74.00 | 1.87 | 1.87 |
30 | VP | 3181 | 880.00 | 2.94 | 3.07 |
31 | VR | 8594 | 826.10 | 2.92 | 2.83 |
32 | WC | 8684 | 420.00 | 2.62 | 2.71 |
33 | WI | 8679 | 138.70 | 2.14 | 2.16 |
34 | WK | 8676 | 40.60 | 1.61 | 2.29 |
35 | WL | 8677 | 43.60 | 1.64 | 2.13 |
36 | WM | 8682 | 243.10 | 2.39 | 2.30 |
37 | WN | 8680 | 148.50 | 2.17 | 2.25 |
38 | WP | 8504 | 4530.00 | 3.66 | 3.49 |
39 | WQ | 8678 | 120.30 | 2.08 | 2.15 |
40 | WR | 8675 | 37.80 | 1.58 | 1.57 |
41 | WS | 8687 | 643.50 | 2.81 | 2.76 |
42 | WT | 8685 | 482.10 | 2.68 | 2.60 |
43 | WV | 8556 | 65.69 | 1.82 | 2.15 |
44 | WW | 8686 | 554.80 | 2.74 | 2.69 |
45 | WY | 8683 | 281.00 | 2.45 | 2.40 |
46 | YP | 8521 | 3170.00 | 3.50 | 3.16 |
No 1 | Sequence | ID 2 | IC50 | Log IC50 | Predicted log IC50 3 |
---|---|---|---|---|---|
1 | APG | 8500 | 40,000 | 4.60 | 4.50 |
2 | GPA | 8522 | 40,000 | 4.60 | 4.50 |
3 | GPM | 9117 | 417.90 | 2.62 | 2.43 |
4 | GPV | 9116 | 794.80 | 2.90 | 3.26 |
5 | IPA | 8304 | 49.00 | 1.69 | 2.03 |
6 | IPI | 3167 | 7.40 | 0.87 | 1.45 |
7 | IPM | 9233 | 69.50 | 1.84 | 1.81 |
8 | LPL | 8616 | 241.40 | 2.38 | 1.45 |
9 | LPQ | 9339 | 82.00 | 1.91 | 2.41 |
10 | LQP | 8689 | 1181.10 | 3.07 | 2.41 |
11 | PPG | 8653 | 2252.68 | 3.35 | 3.32 |
12 | PPL | 8652 | 390.14 | 2.59 | 2.42 |
13 | VPL | 8347 | 15.80 | 1.20 | 1.47 |
14 | WRA | 8608 | 690 | 2.84 | 2.58 |
15 | WRD | 8596 | 376 | 2.58 | 2.79 |
16 | WRE | 8595 | 350 | 2.54 | 2.79 |
17 | WRF | 8599 | 413 | 2.62 | 2.76 |
18 | WRG | 8600 | 473 | 2.68 | 2.64 |
19 | WRH | 8606 | 670 | 2.83 | 2.78 |
20 | WRI | 8610 | 730 | 2.86 | 2.82 |
21 | WRK | 8598 | 406 | 2.61 | 2.79 |
22 | WRL | 8612 | 903 | 2.96 | 2.82 |
23 | WRM | 8607 | 673 | 2.83 | 2.67 |
24 | WRN | 8597 | 403 | 2.61 | 2.79 |
25 | WRP | 8611 | 780 | 2.89 | 2.77 |
26 | WRQ | 8609 | 720 | 2.86 | 2.79 |
27 | WRR | 8604 | 570 | 2.76 | 2.72 |
28 | WRS | 8601 | 483 | 2.68 | 2.75 |
29 | WRT | 8603 | 526 | 2.72 | 2.66 |
30 | WRW | 8602 | 487 | 2.69 | 2.57 |
31 | WRY | 8605 | 640 | 2.81 | 2.70 |
32 | WWW | 8681 | 216 | 2.33 | 2.32 |
33 | YPY | 8617 | 243.70 | 2.39 | 2.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrynkiewicz, M.; Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Płonka, W. Analysis of Structure–Activity Relationships of Food-Derived DPP IV-Inhibitory Di- and Tripeptides Using Interpretable Descriptors. Appl. Sci. 2023, 13, 12935. https://doi.org/10.3390/app132312935
Hrynkiewicz M, Iwaniak A, Minkiewicz P, Darewicz M, Płonka W. Analysis of Structure–Activity Relationships of Food-Derived DPP IV-Inhibitory Di- and Tripeptides Using Interpretable Descriptors. Applied Sciences. 2023; 13(23):12935. https://doi.org/10.3390/app132312935
Chicago/Turabian StyleHrynkiewicz, Monika, Anna Iwaniak, Piotr Minkiewicz, Małgorzata Darewicz, and Wojciech Płonka. 2023. "Analysis of Structure–Activity Relationships of Food-Derived DPP IV-Inhibitory Di- and Tripeptides Using Interpretable Descriptors" Applied Sciences 13, no. 23: 12935. https://doi.org/10.3390/app132312935
APA StyleHrynkiewicz, M., Iwaniak, A., Minkiewicz, P., Darewicz, M., & Płonka, W. (2023). Analysis of Structure–Activity Relationships of Food-Derived DPP IV-Inhibitory Di- and Tripeptides Using Interpretable Descriptors. Applied Sciences, 13(23), 12935. https://doi.org/10.3390/app132312935