Lunar Cold Microtraps as Future Source of Raw Materials—Business and Technological Perspective
Abstract
:1. Introduction
2. Moon Raw Material Surveying Strategy
2.1. Metal Deposits
2.2. Helium-3 Inventory
2.3. Water Ice Deposits
2.4. Carbon Deposits
3. Moon Cold Traps Exploration Challenges
4. Materials and Methods
- Crater diameter;
- Size of the permanently shaded area;
- Crater depth;
- Maximum crater slope;
- Maximum crater slope along the rover’s route;
- Length of the descent route to the crater floor;
- Length of the exit route from the crater floor;
- Crater latitude (LAT);
- Longitude of the crater (LON);
- Amount of water;
- Amount of CO2 (carbon source);
- Crater distance (total route length to travel);
- Crater surface;
- Minimum temperature;
- Maximum temperature;
- Number of other deposits, if they occur in the analyzed cold microtrap
5. Results
- 1 cm—pessimistic scenario;
- 5 cm—nominal scenario;
- 1 m—optimistic scenario.
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castor, S.B.; Hedrick, J.B. Rare Earth Elements. In Industrial Mineral and Rocks, 7th ed.; Kogel, J.E., Trivedi, N.C., Barker, J.M., Krukowski, S.T., Eds.; SME: Littleton, CO, USA, 2006; pp. 769–771. [Google Scholar]
- Łuszczek, K.; Przylibski, T.A. Skład chondrytów zwyczajnych a potencjalne surowce pasa planetoid (Composition of Ordinary Chondrites and Potential Natural Resources of Asteroid Belt). Acta Soc. Metheoriticae Pol. 2011, 2, 92–111. [Google Scholar]
- Asterank. Available online: http://www.asterank.com/ (accessed on 30 August 2023).
- Cannon, K.M.; Gialich, M.; Acain, J. Precious and structural metals on asteroids. Planet. Space Sci. 2023, 225, 105608. [Google Scholar] [CrossRef]
- Opportunities for Space Resources Utilization. Future Markets & Value Chains. Luxembourg Space Agency. Available online: https://space-agency.public.lu/dam-assets/publications/2018/Study-Summary-of-the-Space-Resources-Value-Chain-Study.pdf (accessed on 30 August 2023).
- Available online: https://petrowiki.spe.org/PEH:Drilling_Problems_and_Solutions (accessed on 30 October 2023).
- Azar, J.J. Chapter 10—Drilling Problems and Solutions. In Petroleum Engineering Handbook; Lake, L.W., Mitchell, R.F., Eds.; SPE: Richardson, TX, USA, 2006; pp. 433–454. [Google Scholar]
- Available online: https://www.popularmechanics.com/space/moon-mars/a44753442/nasa-nuclear-rocket-could-get-to-mars-in-45-days/ (accessed on 30 October 2023).
- Available online: https://www.nasa.gov/press-release/nasa-darpa-will-test-nuclear-engine-for-future-mars-missions (accessed on 30 August 2023).
- Available online: https://www.darpa.mil/program/demonstration-rocket-for-agile-cislunar-operations (accessed on 30 August 2023).
- Available online: https://pulsarfusion.com/products-development/fusion-propulsion/ (accessed on 30 August 2023).
- Robbins, S.J.; Hynek, B.M. A New Global Database of Mars Impact Craters ≥ 1 km: 2. Global Crater Properties and Regional Variations of the Simple-to-Complex Transition Diameter. J. Geophys. Res. 2012, 117, E06001. [Google Scholar] [CrossRef]
- Available online: https://www.space.com/how-long-does-it-take-to-get-to-the-moon (accessed on 30 October 2023).
- Timman, S.; Landgraf, M.; Haskamp, C.; Lizy-Destrez, S.; Dehais, F. Effect of time-delay on lunar sampling tele-operations: Evidences from cardiac, ocular and behavioral measures. Appl. Ergon. 2023, 107, 103910. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bell, M.; Mellinkoff, B.; Sandoval, A.; Martin, W.B.; Burns, J. A Methodology to Assess the Human Factors Associated with Lunar Teleoperated Assembly Tasks. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; Available online: https://arxiv.org/abs/2005.08120 (accessed on 30 October 2023).
- Available online: https://www.space.com/all-moon-missions (accessed on 30 October 2023).
- James, P.B.; Smith, D.E.; Byrne, P.K.; Kendall, J.D.; Melosh, H.J.; Zuber, M.T. Deep structure of the lunar South Pole-Aitken basin. Geophys. Res. Lett. 2019, 46, 5100–5106. [Google Scholar] [CrossRef]
- Robbins, S.J. A new global database of lunar impact craters >1–2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis. J. Geophys. Res. Planets 2019, 124, 871–892. [Google Scholar] [CrossRef]
- Ross, S.D. Near-Earth Asteroid Mining. Space Industry Report, Control and Dynamical Systems, Caltech, Pasadena, 14 December 2001. Available online: https://space.nss.org/wp-content/uploads/Near-Earth-Asteroid-Mining-Ross-2001.pdf (accessed on 30 August 2023).
- Initial Imaging and Observations by Chandrayaan-2 Dual-Frequency Synthetic Aperture Radar (DF-SAR). Available online: https://www.isro.gov.in/Initial%20Image.html (accessed on 30 August 2023).
- Kirtley, D.; Milroy, R. Fundamental Scaling of Adiabatic Compression of Field Reversed Configuration Thermonuclear Fusion Plasmas. J. Fusion Energy 2023, 42, 30. [Google Scholar] [CrossRef]
- Song, H.; Zhang, J.; Sun, Y.; Li, Y.; Zhang, X.; Ma, D.; Kou, J. Theoretical Study on Thermal Release of Helium-3 in Lunar Ilmenite. Minerals 2021, 11, 319. [Google Scholar] [CrossRef]
- Fa, W.; Jin, Y.-Q. Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer. Icarus 2007, 190, 15–23. [Google Scholar] [CrossRef]
- Niechciał, J.; Banat, P.; Kempiński, W.; Trybuła, Z.; Chorowski, M.; Poliński, J.; Chołast, K.; Kociemba, A. Operational Costs of He3 Separation Using the Superfluidity of He4. Energies 2020, 13, 6134. [Google Scholar] [CrossRef]
- Wenzhe, F.; Yaqiu, J. Global inventory of Helium-3 in lunar regoliths estimated by a multichannel microwave radiometer on the Chang-E 1 lunar satellite. Chin. Sci. Bull. 2010, 55, 4005–4009. [Google Scholar]
- Lunar Networks—Chang’e-1 Maps Moon’s Helium-3 Inventory. Available online: http://lunarnetworks.blogspot.com/2010/12/change-1-maps-moons-helium-3-inventory.html (accessed on 30 August 2023).
- Kuhlman, K.R.; Kulcinski, G.L. Helium Isotopes in the Lunar Regolith–Measuring Helium Isotope Diffusivity in Lunar Analogs. In Moon; Badescu, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Li, A.; Chen, X.; Song, L.; Chen, G.; Xu, W.; Huo, J.; Gao, M.; Li, M.; Zhang, L.; Yao, B.; et al. Taking advantage of glass: Capturing and retaining the helium gas on the moon. Mater. Futures 2022, 1, 035101. [Google Scholar] [CrossRef]
- Available online: https://planetaryintel.substack.com/p/lunar-oxygen-therapy (accessed on 30 August 2023).
- Akay, Ö.; Bashkatov, A.; Coy, E.; Eckert, K.; Einarsrud, K.E.; Friedrich, A.; Kimmel, B.; Loos, S.; Mutschke, G.; Röntzsch, L.; et al. Electrolysis in reduced gravitational environments: Current research perspectives and future applications. NPJ Microgravity 2022, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Lomax, B.A.; Just, G.H.; McHugh, P.J.; Broadley, P.K.; Hutchings, G.C.; Burke, P.A.; Roy, M.J.; Smith, K.L. Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars. Nat. Commun. 2022, 13, 583. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Valentín, E.G.; Meyer, H.M.; Taylor, P.A.; Mazarico, E.; Bhiravarasu, S.S.; Virkki, A.K.; Nolan, M.C.; Chabot, N.L.; Giorgini, J.D. Arecibo S-band Radar Characterization of Local-scale Heterogeneities within Mercury’s North Polar Deposits. Planet. Sci. J. 2022, 3, 62. [Google Scholar] [CrossRef]
- Wilcoski, A.X.; Hayne, P.O.; Landis, M.E. Polar Ice Accumulation from Volcanically Induced Transient Atmospheres on the Moon. Planet. Sci. J. 2022, 3, 99. [Google Scholar] [CrossRef]
- Kleinhenz, J.; McAdam, A.; Colaprete, A.; Beaty, D.; Cohen, B.; Clark, P.; Gruener, J.; Schuler, J.; Young, K. Lunar Water ISRU Measurement Study (LWIMS): Establishing a Measurement Plan for Identification and Characterization of a Water Reserve. NASA. 2020. Available online: https://ntrs.nasa.gov/api/citations/20205008626/downloads/TM-20205008626.pdf (accessed on 30 August 2023).
- Zhang, Y.; Zhao, F.; Chang, S.; Liu, M.; Wang, R. An Innovative Synthetic Aperture Radar Design Method for Lunar Water Ice Exploration. Remote Sens. 2022, 14, 2148. [Google Scholar] [CrossRef]
- Shuai, L.; Lucey, P.G.; Milliken, R.E.; Elphic, R.C. Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. USA 2018, 115, 8907–8912. Available online: https://www.pnas.org/doi/full/10.1073/pnas.1802345115 (accessed on 30 August 2023).
- Hayne, P.O.; Aharonson, O.; Schörghofer, N. Micro cold traps on the Moon. Nat. Astron. 2021, 5, 169–175. [Google Scholar] [CrossRef]
- Secrets of the Moon’s Permanent Shadows Are Coming to Light. Available online: https://www.quantamagazine.org/secrets-of-the-moons-permanent-shadows-are-coming-to-light-20220428/ (accessed on 30 August 2023).
- Sefton-Nash, E.; Williams, J.-P.; Greenhagen, B.T.; Warren, T.J.; Bandfield, J.L.; Ayef, K.-M.; Leader, F.; Siegler, M.A.; Hayne, P.O.; Bowles, N.; et al. Evidence for ultra-cold traps and surface water ice in the lunar south polar crater Amundsen. Icarus 2019, 332, 1–13. [Google Scholar] [CrossRef]
- Platts, W.J.; Boucher, D.; Randall Gladstone, G. Prospecting for native metals in lunar polar craters. In Proceedings of the 7th Symposium on Space Resource Utilization, Kissimmee, FL, USA, 5–9 January 2015; AIAA: Reston, VA, USA, 2013. [Google Scholar]
- Brown, H.M.; Robinson, M.S.; Boyd, A.K. Identifying Resource-rich Lunar Permanently Shadowed Regions: Table and Maps. In Proceedings of the 50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132), Spring, TX, USA, 18–22 March 2019; Arizona State University, School of Earth and Space Exploration: Tempe, AZ, USA, 2019. [Google Scholar]
- Marco Figuera, R.; Riedel, C.; Rossi, A.P.; Unnithan, V. Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring. Remote Sens. 2022, 14, 450. [Google Scholar] [CrossRef]
- Costello, E.S.; Ghent, R.R.; Hirabayashi, M.; Lucey, P.G. Impact gardening as a constraint on the age, source, and evolution of ice on Mercury and the Moon. J. Geophys. Res. Planets 2020, 125, e2019JE006172. [Google Scholar] [CrossRef]
- SpaceX Starship. Available online: https://www.spacex.com/vehicles/starship/ (accessed on 30 August 2023).
- Cannon, K.M. Accessible Carbon on the Moon. Available online: https://arxiv.org/pdf/2104.13521.pdf (accessed on 30 August 2023).
- Hess, M.; Wöhler, C.; Berezhnoy, A.A.; Bishop, J.L.; Shevchenko, V.V. Dependence of the Hydration of the Lunar Surface on the Concentrations of TiO2, Plagioclase, and Spinel. Remote Sens. 2022, 14, 47. [Google Scholar] [CrossRef]
- NSR Moon Market Analysis 2nd Edition. Available online: https://www.nsr.com/nsr-developing-moon-market-propelled-by-250-missions-and-105-billion-in-revenue-through-decade/ (accessed on 30 August 2023).
- Available online: https://www.esa.int/Applications/Telecommunications_Integrated_Applications/ESA_invites_space_firms_to_create_lunar_services (accessed on 30 August 2023).
- Available online: https://crescentspace.com/ (accessed on 30 August 2023).
- Available online: https://www.lockheedmartin.com/en-us/news/features/2021/lunar-terrain-vehicle.html (accessed on 30 August 2023).
- Available online: https://www.lpi.usra.edu/exploration/training/illustrations/lunarExploration/ (accessed on 30 August 2023).
- Available online: https://sservi.nasa.gov/articles/scale-of-lunar-south-polar-mountains/ (accessed on 30 August 2023).
- Available online: https://trumpwhitehouse.archives.gov/presidential-actions/presidential-memorandum-launch-spacecraft-containing-space-nuclear-systems/ (accessed on 30 August 2023).
- Available online: https://www.rolls-royce.com/media/our-stories/discover/2023/uk-space-agency-backs-rolls-royce-nuclear-power-for-moon-exploration.aspx (accessed on 30 August 2023).
- Available online: https://discover.lanl.gov/news/1102-nuclear-reactors-in-space/ (accessed on 30 August 2023).
- Available online: https://www.spacenukes.com/ (accessed on 30 August 2023).
- Poston, D. Industry Perspectives on Space Reactor Development. In Proceedings of the Nuclear and Emerging Markets for Space 2021 (NETS2021), USA, 26–30 April 2021; Available online: https://www.spacenukes.com/_files/ugd/a08fa5_49a9a4fb45514448aadd411b2f3814ed.pdf (accessed on 30 August 2023).
- Mishra, A.; Senthil Kumar, P. Spatial and Temporal Distribution of Lobate Scarps in the Lunar South Polar Region: Evi-dence for Latitudinal Variation of Scarp Geometry, Kinematics and Formation Ages, Neo-Tectonic Activity and Sources of Potential Seismic Risks at the Artemis Candidate Landing Regions. Geophys. Res. Lett. 2022, 49, e2022GL098505. [Google Scholar]
- Illumination at the Moon’s South Pole to 80°S, 2025 to 2028. Available online: https://svs.gsfc.nasa.gov/5027 (accessed on 30 August 2023).
- Cannon, K.M.; Britt, D.T. Accessibility data set for large permanent cold traps at the lunar poles. Earth Space Sci. 2020, 7, e2020EA001291. [Google Scholar] [CrossRef]
- Available online: https://polsa.gov.pl/wydarzenia/misja-ksiezycowa-zakonczenie-konsultacji/ (accessed on 30 August 2023).
- Zwierzyński, A.J.; Teper, W.; Wiśniowski, R.; Gonet, A.; Buratowski, T.; Uhl, T.; Seweryn, K. Feasibility Study of Low Mass and Low Energy Consumption Drilling Devices for Future Space (Mining Surveying) Missions. Energies 2021, 14, 5005. [Google Scholar] [CrossRef]
- Available online: https://www.space.com/danuri-korea-pathfinder-lunar-orbiter-kplo-moon-mission (accessed on 30 August 2023).
- Lunar QuickMap. Available online: https://quickmap.lroc.asu.edu/ (accessed on 30 August 2023).
- Available online: https://www.actgate.com/ (accessed on 30 August 2023).
- Plate, J. Conceptual Economic Study for Lunar Water Mining; WGM: Toronto, ON, Canada, 2019; Available online: http://wgm.ca/wp-content/uploads/2019/08/ConceptualSpaceMiningStudyandBusinessCase.pdf (accessed on 30 August 2023).
- City Bank Report: SPACE—The Dawn of a New Age; Citi GPS: Global Perspectives & Solutions: Alberta, CA, Canada, 2022.
- Scatteia, L.; Perrot, Y. Lunar Market Assessment: Market Trends and Challenges in the Development of a Lunar Economy; PwC: London, UK, 2021. [Google Scholar]
- Ciazela, J.; Bakala, J.; Kowalinski, M.; Pieterek, B.; Steslicki, M.; Ciazela, M.; Paslawski, G.; Zalewska, N.; Sterczewski, L.; Szaforz, Z.; et al. Lunar ore geology and feasibility of ore mineral detection using a far-IR spectrometer. Front. Earth Sci. 2023, 11, 1190825. [Google Scholar] [CrossRef]
Parameter | B-1 | B-2 | B-3 | B-4 | B-5 |
---|---|---|---|---|---|
Pole | South | South | South | South | South |
Crater approximated diameter [km] | 7.777 | 8.413 | 5.393 | 7.898 | 5.211 |
Size of the permanently shaded area [km2] | 8.135 | 23.659 | 7.888 | 8.090 | 6.959 |
Crater depth [m] | 1100 | 1400 | 1000 | 800 | 1000 |
Maximum crater slope [°] | 25 | 26 | 33 | 28 | 30 |
Maximum crater slope along the selected rover’s route [°] | 22 | 13 | 25 | 20 | 24 |
Length of the descent route to the micro trap [km] | 1.615 | 4.030 | 1.852 * | 2.690 | 2.373 |
Length of the exit route to the micro trap [km] | 2.221 | 4.030 | 3.126 * | 2.690 | 5.717 |
Crater latitude (LAT) | −88.20990 | −79.29052 | −78.26205 | −80.31803 | −89.12808 |
Crater longitude (LON) | 305.92639 | 69.71826 | 272.85840 | 290.27836 | 273.21226 |
Amount of water [wt%] | 0.2 | 0.1 | 0.2–0.3 | 0–0.1 | 0.3 |
CO2 amount [log10 kg/m2/Gyr] | 14–21 | - | - | 14–21 | 10–20 |
Crater distance [km] | 24.455 | 26.859 | 16.802 | 17.353 | 16.380 |
Crater area [km2] | 47.073 | 57.017 | 22.266 | 23.609 | 21.227 |
Global minimum temperature [K] | - | 50–60 | 55–60 | 55–65 | - |
Global maximum temperature [K] | - | 230–245 | 230–240 | 240–250 | - |
Average summer temperature [K] | 70–170 | - | - | - | - |
Average winter temperature [K] | 60–150 | - | - | - | - |
Minimum summer temperature [K] | - | - | - | - | 40–70 |
Maximum summer temperature [K] | - | - | - | - | 100–300 |
Minimum temperature in winter [K] | - | - | - | - | 30–60 |
Maximum temperature in winter [K] | - | - | - | - | 50–270 |
Surface temperature at night | - | - | - | - | - |
Iron deposits [wt%] | 6 | 6 | 6 | 6 | 5–7 |
Thorium deposits [ppm] | 2 | 1 | 1 | 1 | 0–2 |
Titanium deposits [wt%] | none | 0.5 | <1 | 0–1.5 | none |
Parameter | B-1 | B-2 | B-3 | B-4 | B-5 |
---|---|---|---|---|---|
Size of the permanently shaded area [km2] | 8.135 | 23.659 | 7.888 | 8.090 | 6.959 |
Amount of water [wt%] | 0.2 | 0.1 | 0.2 | 0.1 | 0.3 |
CO2 amount ppm | 1000 | 0 | 0 | 1000 | 1000 |
Iron deposits [wt%] | 6 | 6 | 6 | 6 | 5 |
Thorium deposits [ppm] | 2 | 1 | 1 | 1 | 2 |
Titanium deposits [wt%] | 0 | 0.5 | 1 | 1.5 | 0 |
Parameter | B-1 | B-2 | B-3 | B-4 | B-5 |
---|---|---|---|---|---|
Water | 24,405 | 35,488.5 | 23,664 | 12,135 | 31,315.5 |
CO2 | 12,202.5 | 0 | 0 | 12,135 | 10,438.5 |
Iron | 732,150 | 2,129,310 | 709,920 | 728,100 | 521,925 |
Thorium | 24.40 | 35.48 | 11.83 | 12.13 | 20.87 |
Titanium | 0 | 177,442.5 | 118,320 | 182,025 | 0 |
Parameter | B-1 | B-2 | B-3 | B-4 | B-5 |
---|---|---|---|---|---|
Water | 122,025 | 177,442.5 | 118,320 | 60,675 | 156,577.5 |
CO2 | 61,012.5 | 0 | 0 | 60,675 | 52,192.5 |
Iron | 3,660,750 | 10,646,550 | 3,549,600 | 3,640,500 | 2,609,625 |
Thorium | 122.02 | 177.44 | 59.16 | 60.67 | 104.38 |
Titanium | 0 | 887,212.5 | 591,600 | 910,125 | 0 |
Parameter | B-1 | B-2 | B-3 | B-4 | B-5 |
---|---|---|---|---|---|
Water | 2,440,500 | 3,548,850 | 2,366,400 | 1,213,500 | 3,131,550 |
CO2 | 1,220,250 | 0 | 0 | 1,213,500 | 1,043,850 |
Iron | 73,215,000 | 212,931,000 | 70,992,000 | 72,810,000 | 52,192,500 |
Thorium | 2440.5 | 3548.85 | 1183.2 | 1213.5 | 2087.7 |
Titanium | 0 | 17,744,250 | 11,832,000 | 18,202,500 | 0 |
Parameter | B-1 | B-2 | B-3 | B-4 | B-5 |
---|---|---|---|---|---|
Water | 12,202 | 17,744 | 11,832 | 6067 | 15,657 |
CO2 | 2440 | 0 | 0 | 2427 | 2087 |
Iron | 89 | 259 | 86 | 88 | 63 |
Thorium | 0.7 | 1 | 0.3 | 0.3 | 0.6 |
Titanium | 0 | 1109 | 739 | 1137 | 0 |
TOTAL | 14,732 | 19,113 | 12,658 | 9721 | 17,809 |
Parameter | B-1 | B-2 | B-3 | B-4 | B-5 |
---|---|---|---|---|---|
Water | 61,012 | 88,721 | 59,160 | 30,337 | 78,288 |
CO2 | 12,202 | 0 | 0 | 12,135 | 10,438 |
Iron | 445 | 1296 | 432 | 443 | 317 |
Thorium | 3.6 | 5.3 | 1.7 | 1.8 | 3.1 |
Titanium | 0 | 5545 | 3697 | 5688 | 0 |
TOTAL | 73,664 | 95,568 | 63,291 | 48,606 | 89,048 |
Parameter | B-1 | B-2 | B-3 | B-4 | B-5 |
---|---|---|---|---|---|
Water | 1,220,250 | 1,774,425 | 1,183,200 | 606,750 | 1,565,775 |
CO2 | 244,050 | 0 | 0 | 242,700 | 208,770 |
Iron | 8917 | 25,935 | 8646 | 8868 | 6357 |
Thorium | 73 | 106 | 35 | 36 | 62 |
Titanium | 0 | 110,901 | 73,950 | 113,765 | 0 |
TOTAL | 1,473,290 | 1,911,368 | 1,265,832 | 972,120 | 1,780,964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zwierzyński, A.J.; Ciążela, J.; Boroń, P.; Binkowska, W. Lunar Cold Microtraps as Future Source of Raw Materials—Business and Technological Perspective. Appl. Sci. 2023, 13, 13030. https://doi.org/10.3390/app132413030
Zwierzyński AJ, Ciążela J, Boroń P, Binkowska W. Lunar Cold Microtraps as Future Source of Raw Materials—Business and Technological Perspective. Applied Sciences. 2023; 13(24):13030. https://doi.org/10.3390/app132413030
Chicago/Turabian StyleZwierzyński, Adam Jan, Jakub Ciążela, Piotr Boroń, and Weronika Binkowska. 2023. "Lunar Cold Microtraps as Future Source of Raw Materials—Business and Technological Perspective" Applied Sciences 13, no. 24: 13030. https://doi.org/10.3390/app132413030
APA StyleZwierzyński, A. J., Ciążela, J., Boroń, P., & Binkowska, W. (2023). Lunar Cold Microtraps as Future Source of Raw Materials—Business and Technological Perspective. Applied Sciences, 13(24), 13030. https://doi.org/10.3390/app132413030