A Case Study of the Radon Hazard at the Boundary of a Coal Minefield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. VAR and RFD Measurement
2.3. Statistical Analysis
2.4. Spatial Methods
2.5. Meteorological Conditions during Research
3. Results
3.1. Soil Air VAR
3.2. RFD
3.3. Spatial Patterns of RFD and Soil Air VAR
4. Discussion
4.1. VAR in Soil Air
4.2. RFD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhaskaran, R.; Damodaran, R.C.; Kumar, V.A.; Panakal John, J.; Bangaru, D.; Natarajan, C.; Sathiamurthy, B.S.; Mundiyanikal Thomas, J.; Mishra, R. Inhalation Dose and Source Term Studies in a Tribal Area of Wayanad, Kerala, India. J. Environ. Public Health 2017, 2017, e1930787. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.K.; Seo, S.; Jin, Y.W. Health Effects of Radon Exposure. Yonsei Med. J. 2019, 60, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Georgakilas, A.G.; O’Neill, P.; Stewart, R.D. Induction and Repair of Clustered DNA Lesions: What Do We Know so Far? Radiat. Res. 2013, 180, 100–109. [Google Scholar] [CrossRef]
- Reddy, A.; Conde, C.; Peterson, C.; Nugent, K. Residential Radon Exposure and Cancer. Oncol. Rev. 2022, 16, 558. [Google Scholar] [CrossRef] [PubMed]
- Radon. Available online: https://www.who.int/news-room/fact-sheets/detail/radon-and-health (accessed on 23 October 2023).
- Ma, Y.; Bringemeier, D.; Scheuermann, A.; Molebatsi, T.; Li, L. Fault and fracture zone detection based on soil gas mapping and gamma ray survey at the extension site of an open pit coal mine. In Proceedings of the 12th Coal Operators’ Conference, Wollongong, Australia, 16–17 February 2012. [Google Scholar]
- Giustini, F.; Ruggiero, L.; Sciarra, A.; Beaubien, S.E.; Graziani, S.; Galli, G.; Pizzino, L.; Tartarello, M.C.; Lucchetti, C.; Sirianni, P.; et al. Radon Hazard in Central Italy: Comparison among Areas with Different Geogenic Radon Potential. Int. J. Environ. Res. Public Health 2022, 19, 666. [Google Scholar] [CrossRef]
- Wang, N.; Yang, J.; Wang, H.; Jia, B.; Peng, A. Characteristics of Indoor and Soil Gas Radon, and Discussion on High Radon Potential in Urumqi, Xinjiang, NW China. Atmosphere 2023, 14, 1548. [Google Scholar] [CrossRef]
- Borgoni, R.; Tritto, V.; Bigliotto, C.; De Bartolo, D. A Geostatistical Approach to Assess the Spatial Association between Indoor Radon Concentration, Geological Features and Building Characteristics: The Case of Lombardy, Northern Italy. Int. J. Environ. Res. Public Health 2011, 8, 1420–1440. [Google Scholar] [CrossRef]
- Gavriliev, S.; Petrova, T.; Miklyaev, P.; Karfidova, E. Predicting Radon Flux Density from Soil Surface Using Machine Learning and GIS Data. Sci. Total Environ. 2023, 903, 166348. [Google Scholar] [CrossRef]
- Tsvetkova, T.; Przylibski, T.A.; Nevinsky, I.; Nevinsky, V. Measurement of Radon in the East Europe under the Ground. Radiat. Meas. 2005, 40, 98–105. [Google Scholar] [CrossRef]
- Cinelli, G.; Tositti, L.; Capaccioni, B.; Brattich, E.; Mostacci, D. Soil Gas Radon Assessment and Development of a Radon Risk Map in Bolsena, Central Italy. Environ. Geochem. Health 2015, 37, 305–319. [Google Scholar] [CrossRef]
- Kemski, J.; Klingel, R.; Siehl, A.; Valdivia-Manchego, M. From Radon Hazard to Risk Prediction-Based on Geological Maps, Soil Gas and Indoor Measurements in Germany. Environ. Geol. 2009, 56, 1269–1279. [Google Scholar] [CrossRef]
- Moussa, M.M.; El Arabi, A.-G.M. Soil Radon Survey for Tracing Active Fault: A Case Study along Qena-Safaga Road, Eastern Desert, Egypt. Radiat. Meas. 2003, 37, 211–216. [Google Scholar] [CrossRef]
- Utkin, V.I.; Yurkov, A.K. Radon as a Tracer of Tectonic Movements. Russ. Geol. Geophys. 2010, 51, 220–227. [Google Scholar] [CrossRef]
- Seminsky, K.Z.; Bobrov, A.A. Radon Activity of Faults (Western Baikal and Southern Angara Areas). Russ. Geol. Geophys. 2009, 50, 682–692. [Google Scholar] [CrossRef]
- Ball, T.K.; Wysocka, M. Radon in Coalfields in the United Kingdom and Poland. Arch. Min. Sci. 2011, 56, 249–264. [Google Scholar]
- Klingel, R.; Kemski, J. Influence of Underground Mining on the Geogenic Radon Potential. Radon Living Environ. 1999, 773–786. [Google Scholar]
- Palchik, V. Localization of Mining-Induced Horizontal Fractures along Rock Layer Interfaces in Overburden: Field Measurements and Prediction. Environ. Geol. 2005, 48, 68–80. [Google Scholar] [CrossRef]
- Wysocka, M.; Chalupnik, S. Correlation of Radon Concentration Level with Mining and Geological Conditions in Upper Silesia Region. J. Min. Sci. 2003, 2, 199–206. [Google Scholar] [CrossRef]
- Leshukov, T.; Larionov, A.; Legoshchin, K.; Lesin, Y.; Yakovleva, S. The Assessment of Radon Emissions as Results of the Soil Technogenic Disturbance. Int. J. Environ. Res. Public Health 2020, 17, 9268. [Google Scholar] [CrossRef]
- Leshukov, T.; Larionov, A.; Legoshchin, K.; Yakovleva, S. Radon Hazard Assessment in Region with Intense Coal Mining Industry. IOP Conf. Ser. Earth Environ. Sci. 2020, 543, 012026. [Google Scholar] [CrossRef]
- Wysocka, M.; Skubacz, K.; Chmielewska, I.; Urban, P.; Bonczyk, M. Radon Migration in the Area around the Coal Mine during Closing Process. Int. J. Coal Geol. 2019, 212, 103253. [Google Scholar] [CrossRef]
- Schery, S.D.; Gaeddert, D.H. Measurements of the Effect of Cyclic Atmospheric Pressure Variation on the Flux of 222RN from the Soil. Geophys. Res. Lett. 1982, 9, 835–838. [Google Scholar] [CrossRef]
- Modibo, O.B.; Tamakuma, Y.; Suzuki, T.; Yamada, R.; Zhuo, W.; Kranrod, C.; Iwaoka, K.; Akata, N.; Hosoda, M.; Tokonami, S. Long-Term Measurements of Radon and Thoron Exhalation Rates from the Ground Using the Vertical Distributions of Their Activity Concentrations. Int. J. Environ. Res. Public Health 2021, 18, 1489. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Cao, Y.-J.; Tien, J. Method for Prevention and Control of Spontaneous Combustion of Coal Seam and Its Application in Mining Field. Int. J. Min. Sci. Technol. 2017, 27, 839–846. [Google Scholar] [CrossRef]
- Wysocka, M.; Nowak, S.; Chałupnik, S.; Bonczyk, M. Radon Concentrations in Dwellings in the Mining Area—Are There Observed Effects of the Coal Mine Closure? Int. J. Environ. Res. Public Health 2022, 19, 5214. [Google Scholar] [CrossRef] [PubMed]
- Adushkin, V.V. Technogenic tectonic seismicity in Kuzbass. GiG 2018, 59, 709–724. [Google Scholar] [CrossRef]
- Lavrenov, P.F.; Snegko, B.A.; Shigrev, A.F.; Shelemeteva, A.V.; Filippova, N.V. State Geological Map of the Russian Federation. Scale 1: 200,000, 2nd ed.; Kuzbass Series. Sheet N-45-XV (Leninsk-Kuznetsky). Explanatory Letter; VSEGEI: Moscow, Russia, 2018. [Google Scholar]
- Novikov, I.S.; Cherkas, O.V.; Mamedov, G.M.; Simonov, Y.G.; Simonova, T.Y.; Nastavko, V.G. Activity stages and tectonic division in the Kuznetsk Basin, Southern Siberia. Russ. Geol. Geophys. 2013, 54, 324–334. [Google Scholar] [CrossRef]
- Bichkov, A.I.; Shatilova, G.I.; Shigrev, A.F. Geological Structure and Minerals of the Central Part of Kuzbass. Report of the Kuzbass Party on the Compilation of a Geological Map and a Map of Mineral Resources at a Scale of 1:50,000 on the Gramoteinskaya Area within the Framework of Sheets No. 45-41-B, D and No. 45-53-A, B, C, G; KPR Kemerovskoy Oblasti: Novokuznetsk, Russia, 1998. [Google Scholar]
- NRB99/2009; Radiation Safety Standards: Sanitary and Epidemiological Rules and Regulations. Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2009.
- Neri, M.; Giammanco, S.; Leonardi, A. Preliminary Indoor Radon Measurements Near Faults Crossing Urban Areas of Mt. Etna Volcano (Italy). Front. Public Health 2019, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Benà, E.; Ciotoli, G.; Ruggiero, L.; Coletti, C.; Bossew, P.; Massironi, M.; Mazzoli, C.; Mair, V.; Morelli, C.; Galgaro, A.; et al. Evaluation of tectonically enhanced radon in fault zones by quantification of the radon activity index. Sci. Rep. 2022, 12, 21586. [Google Scholar] [CrossRef]
- Annunziatellis, A.; Beaubien, S.E.; Bigi, S.; Ciotoli, G.; Coltella, M.; Lombardi, S. Gas Migration along Fault Systems and through the Vadose Zone in the Latera Caldera (Central Italy): Implications for CO2 Geological Storage. Int. J. Greenh. Gas Control 2008, 2, 353–372. [Google Scholar] [CrossRef]
- Seminsky, K.; Bobrov, A.A.; Sodnomsambuu, D. Radon and Tectonic Activity of the Faults at the Central Mongolia. Dokl. Akad. Nauk 2019, 487, 538–542. [Google Scholar] [CrossRef]
- Seminskii, K.; Bobrov, A.A.; Sodnomsambuu, D. Relationship between Radon and the Tectonic Activity of Faults in Central Mongolia. Dokl. Earth Sci. 2019, 487, 890–893. [Google Scholar] [CrossRef]
- Seminsky, K.Z.; Bobrov, A.A.; Demberel, S. Variations in radon activity in the crustal fault zonez: Spatial characteristics. Izvestiya. Phys. Solid Earth 2014, 50, 795–813. [Google Scholar] [CrossRef]
- Pereira, A.J.S.C.; Neves, L.J.P.F. Estimation of the Radiological Background and Dose Assessment in Areas with Naturally Occurring Uranium Geochemical Anomalies—A Case Study in the Iberian Massif (Central Portugal). J. Environ. Radioact. 2012, 112, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Koo, M.-H.; Cho, B.W.; Jung, Y.-Y.; Oh, Y.H. Factors Controlling the Spatial and Temporal Variability in Groundwater 222Rn and U Levels. Water 2019, 11, 1796. [Google Scholar] [CrossRef]
- Galiana-Merino, J.J.; Molina, S.; Kharazian, A.; Toader, V.-E.; Moldovan, I.-A.; Gómez, I. Analysis of Radon Measurements in Relation to Daily Seismic Activity Rates in the Vrancea Region, Romania. Sensors 2022, 22, 4160. [Google Scholar] [CrossRef] [PubMed]
- Kozlova, I.A.; Yurkov, A.K.; Biryulin, S.V. Variations in the volume activity of radon during technogenic and tectonic seismic events. GIAB 2022, 119–130. [Google Scholar] [CrossRef]
- Long, J.; Liu, J.; Zhang, S.; Li, M. Comprehensive Evaluation of Goaf Range in a Coal Mine with a Complex Terrain through CSAMT and an Activated-Carbon Method for Radon Measurement. Appl. Sci. 2023, 13, 4274. [Google Scholar] [CrossRef]
- Chećko, J.; Howaniec, N.; Paradowski, K.; Smolinski, A. Gas Migration in the Aspect of Safety in the Areas of Mines Selected for Closure. Resources 2021, 10, 73. [Google Scholar] [CrossRef]
- Zhou, B.; Chang, P.; Xu, G. Computational Fluid Dynamic Simulation of Inhaled Radon Dilution by Auxiliary Ventilation in a Stone-Coal Mine Laneway and Dosage Assessment of Miners. Processes 2019, 7, 515. [Google Scholar] [CrossRef]
- Fijałkowska–Lichwa, L.; Przylibski, T.A. Radon (222Rn) as a Tracer in Natural Ventilation Efficiency Assessment in Underground Workings—An Example of „St John Mine” Tourist Complex in Krobica (the Sudetes, SW Poland). J. Environ. Radioact. 2023, 265, 107225. [Google Scholar] [CrossRef]
- Asimakou, K.; Kallithrakas-Kontos, N.; Vafeidis, A.; Manoutsoglou, E. Distribution of Radon Concentrations in Active and Inactive Underground Mines: A Literature Review. Mater. Proc. 2021, 5, 38. [Google Scholar] [CrossRef]
- Peter, M.; Tat’yana, P.; Dmitry, S.; Pavel, S.; Tsebro, D.N. Dynamics of Radon Emission from the Adits of the Former Uranium Mine on the Mount Beshtau. ANRI 2022, 44–60. [Google Scholar] [CrossRef]
- Etiope, G.; Lombardi, S. Evidence for Radon Transport by Carrier Gas through Faulted Clays in Italy. J. Radioanal. Nucl. Chem. 1995, 193, 291–300. [Google Scholar] [CrossRef]
- Cvetković, M.; Kapuralić, J.; Pejić, M.; Kolenković Močilac, I.; Rukavina, D.; Smirčić, D.; Kamenski, A.; Matoš, B.; Špelić, M. Soil Gas Measurements of Radon, CO2 and Hydrocarbon Concentrations as Indicators of Subsurface Hydrocarbon Accumulation and Hydrocarbon Seepage. Sustainability 2021, 13, 3840. [Google Scholar] [CrossRef]
- Dyck, W.; Jonasson, I.R. Chapter 11 Radon. In Handbook of Exploration Geochemistry; Hale, M., Ed.; Geochemical Remote Sensing of the Sub-Surface; Elsevier Science B.V.: Amsterdam, The Netherlands, 2000; Volume 7, pp. 353–394. [Google Scholar]
- Chen, J.; Falcomer, R.; Bergman, L.; Wierdsma, J.; Ly, J. Correlation of Soil Radon and Permeability with Indoor Radon Potential in Ottawa. Radiat. Prot. Dosim. 2009, 136, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Esan, D.T.; Sridhar, M.K.C.; Obed, R.; Ajiboye, Y.; Afolabi, O.; Olubodun, B.; Oni, O.M. Determination of Residential Soil Gas Radon Risk Indices Over the Lithological Units of a Southwestern Nigeria University. Sci. Rep. 2020, 10, 7368. [Google Scholar] [CrossRef] [PubMed]
- Leshukov, T. Radon Hazard in Underground Coal Mining Areas (Using the Example of the Kuznetsk Coal Basin). Ph.D. Thesis, KemSU, Grozny, Russia, 2021. [Google Scholar]
- Okeme, I.C.; Scott, T.B.; Martin, P.G.; Satou, Y.; Ojonimi, T.I.; Olaluwoye, M.O. Assessment of the Mode of Occurrence and Radiological Impact of Radionuclides in Nigerian Coal and Resultant Post-Combustion Coal Ash Using Scanning Electron Microscopy and Gamma-Ray Spectroscopy. Minerals 2020, 10, 241. [Google Scholar] [CrossRef]
- Transbaikal State University; Sidorova, G.P.; Krylov, D.A.; National Research Centre “Kurchatov Institute”. Radiation hazard issues in the coal power generation industry. MIAB 2017, 11, 200–209. [Google Scholar] [CrossRef]
- Lara, E.; Rocha, Z.; Palmieri, H.E.L.; Santos, T.O.; Rios, F.J.; Oliveira, A.H. Radon Concentration in Soil Gas and Its Correlations with Pedologies, Permeabilities and 226Ra Content in the Soil of the Metropolitan Region of Belo Horizonte—RMBH, Brazil. Radiat. Phys. Chem. 2015, 116, 317–320. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Curado, A.; Lopes, S.I. The Relationship between Radon and Geology: Sources, Transport and Indoor Accumulation. Appl. Sci. 2023, 13, 7460. [Google Scholar] [CrossRef]
- Smetanová, I.; Holý, K.; Müllerová, M.; Polášková, A. The Effect of Meteorological Parameters on Radon Concentration in Borehole Air and Water. J. Radioanal. Nucl. Chem. 2010, 283, 101–109. [Google Scholar] [CrossRef]
- Hinkle, M.E. Environmental Conditions Affecting Concentrations of He, CO2, O2 and N2 in Soil Gases. Appl. Geochem. 1994, 9, 53–63. [Google Scholar] [CrossRef]
- Szabó, K.Z.; Jordan, G.; Horváth, Á.; Szabó, C. Dynamics of soil gas radon concentration in a highly permeable soil based on a long-term high temporal resolution observation series. J. Environ. Radioact. 2013, 124, 74–83. [Google Scholar] [CrossRef]
- Haquin, G.; Zafrir, H.; Ilzycer, D.; Weisbrod, N. Effect of Atmospheric Temperature on Underground Radon: A Laboratory Experiment. J. Environ. Radioact. 2022, 253–254, 106992. [Google Scholar] [CrossRef]
- Catalano, R.; Immé, G.; Mangano, G.; Morelli, D.; Aranzulla, M. Radon Transport: Laboratory and Model Study. Radiat. Prot. Dosim. 2015, 164, 575–581. [Google Scholar] [CrossRef]
- Siino, M.; Scudero, S.; Cannelli, V.; Piersanti, A.; D’Alessandro, A. Multiple Seasonality in Soil Radon Time Series. Sci. Rep. 2019, 9, 8610. [Google Scholar] [CrossRef]
- Miklyaev, P.S.; Petrova, T.B.; Shchitov, D.V.; Sidyakin, P.A.; Murzabekov, M.A.; Tsebro, D.N.; Marennyy, A.M.; Nefedov, N.A.; Gavriliev, S.G. Radon Transport in Permeable Geological Environments. Sci. Total Environ. 2022, 852, 158382. [Google Scholar] [CrossRef] [PubMed]
- Benkovitz, A.; Zafrir, H.; Reuveni, Y. A Novel Assessment of the Surface Heat Flux Role in Radon (Rn-222) Gas Flow within Subsurface Geological Porous Media. Remote Sens. 2023, 15, 4094. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, L.; Wang, H.; Guo, Q. The Temporal Variation of Radon Concentration at Different Depths of Soil: A Case Study in Beijing. J. Environ. Radioact. 2023, 264, 107200. [Google Scholar] [CrossRef] [PubMed]
- Rábago, D.; Quindós, L.; Vargas, A.; Sainz, C.; Radulescu, I.; Ioan, M.-R.; Cardellini, F.; Capogni, M.; Rizzo, A.; Celaya, S.; et al. Intercomparison of Radon Flux Monitors at Low and at High Radium Content Areas under Field Conditions. Int. J. Environ. Res. Public Health 2022, 19, 4213. [Google Scholar] [CrossRef] [PubMed]
- Ryzhakova, N.K.; Stavitskaya, K.O.; Plastun, S.A. The Problems of Assessing Radon Hazard of Development Sites in the Russian Federation and the Czech Republic. Radiat. Meas. 2022, 150, 106681. [Google Scholar] [CrossRef]
- Rizo Maestre, C.; Echarri Iribarren, V. The Radon Gas in Underground Buildings in Clay Soils. The Plaza Balmis Shelter as a Paradigm. Int. J. Environ. Res. Public Health 2018, 15, 1004. [Google Scholar] [CrossRef] [PubMed]
- Shweikani, R.; Giaddui, T.G.; Durrani, S.A. The Effect of Soil Parameters on the Radon Concentration Values in the Environment. Radiat. Meas. 1995, 25, 581–584. [Google Scholar] [CrossRef]
- Ciotoli, G.; Lombardi, S.; Zarlenga, F. Natural leakage of helium from Italian sedimentary basins of the Adriatic structural margin. In Proceedings of the Advances in the Geological Storage of Carbon Dioxide; Lombardi, S., Altunina, L.K., Beaubien, S.E., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 191–202. [Google Scholar]
- Ciotoli, G.; Lombardi, S.; Annunziatellis, A. Geostatistical Analysis of Soil Gas Data in a High Seismic Intermontane Basin: Fucino Plain, Central Italy. J. Geophys. Res. Solid Earth 2007, 112, B05407. [Google Scholar] [CrossRef]
- Berberich, G.M.; Berberich, M.B. Comparison of Geogases in Two Cenozoic Sedimentary Basins. Geosciences 2022, 12, 388. [Google Scholar] [CrossRef]
№ | To Old Mining, m | To New Mining, m | To Displacer Fault, m |
---|---|---|---|
1 | 470.7 | 644.3 | 249.2 |
2 | 357.1 | 748.8 | 140.4 |
3 | 292.0 | 835.4 | 66.2 |
4 | 238.0 | 936.1 | 2.4 |
5 | 104.3 | 1053.4 | 129.6 |
6 | 8.0 | 1138.5 | 224.2 |
7 | 57.7 | 1053.5 | 163.2 |
8 | 133.2 | 976.7 | 85.7 |
9 | 238.0 | 869.1 | 20.6 |
10 | 171.0 | 948.1 | 52.9 |
11 | 0.0 | 1120.3 | 227.2 |
12 | 0.0 | 1252.6 | 359.2 |
13 | 0.0 | 1383.2 | 490.6 |
14 | 0.0 | 1182.0 | 283.3 |
15 | 100.0 | 1021.7 | 125.0 |
16 | 220.7 | 899.1 | 3.3 |
17 | 361.4 | 758.2 | 137.6 |
18 | 602.7 | 508.7 | 383.2 |
19 | 556.9 | 548.2 | 340.5 |
20 | 663.8 | 457.0 | 439.5 |
21 | 567.7 | 560.7 | 339.6 |
22 | 453.4 | 675.9 | 224.8 |
23 | 308.6 | 821.8 | 78.8 |
24 | 159.0 | 972.8 | 72.3 |
25 | 0.0 | 1138.9 | 238.5 |
26 | 0.0 | 1296.1 | 395.8 |
27 | 0.0 | 1424.9 | 524.7 |
28 | 0.0 | 1324.6 | 424.7 |
29 | 0.0 | 1267.0 | 367.0 |
30 | 0.0 | 1197.9 | 283.3 |
31 | 0.0 | 1340.6 | 423.8 |
32 | 0.0 | 1477.7 | 559.2 |
33 | 0.0 | 1520.8 | 618.9 |
34 | 0.0 | 1395.5 | 494.8 |
35 | 0.0 | 1443.6 | 543.8 |
36 | 0.0 | 1565.4 | 665.6 |
37 | 0.0 | 1568.6 | 668.5 |
38 | 0.0 | 1645.7 | 745.2 |
39 | 0.0 | 1540.9 | 641.0 |
40 | 0.0 | 1370.7 | 470.4 |
41 | 716.7 | 408.8 | 490.1 |
42 | 876.7 | 247.8 | 650.7 |
43 | 868.9 | 247.7 | 646.9 |
44 | 812.5 | 296.8 | 594.2 |
45 | 787.8 | 320.6 | 569.9 |
46 | 737.8 | 409.8 | 511.9 |
№ | Soil Radon VAR, Bq/m3 | SE, Bq/m3 |
---|---|---|
1 | 9619.6 | 2889.1 |
2 | 8254.7 | 2476.0 |
3 | 7834.7 | 2349.3 |
4 | 11,650.5 | 3495.0 |
5 | 10,948.3 | 3283.3 |
6 | 11,050.5 | 3315.0 |
7 | 8490.7 | 2546.7 |
8 | 10,562.6 | 3168.3 |
9 | 14,195.2 | 4261.3 |
10 | 10,161.4 | 3047.1 |
15 | 11,717.8 | 3514.4 |
16 | 8559.1 | 2567.0 |
17 | 4563.9 | 1368.3 |
18 | 4937.6 | 1481.2 |
19 | 17,520.0 | 5254.9 |
20 | 8304.5 | 2490.6 |
21 | 16,093.6 | 4827.2 |
22 | 11,789.4 | 3536.3 |
23 | 14,304.8 | 4291.3 |
24 | 8983.1 | 2693.8 |
41 | 6222.4 | 1866.2 |
42 | 7461.5 | 2238.1 |
43 | 6528.2 | 1957.6 |
44 | 8803.3 | 2640.0 |
45 | 8994.4 | 2698.1 |
46 | 10,978.0 | 3292.9 |
№ | Soil Radon VAR, Bq/m3 | SE, Bq/m3 |
---|---|---|
11 | 8892.6 | 2666.5 |
12 | 11,071.2 | 3320.4 |
13 | 3477.8 | 1043.3 |
14 | 8596.5 | 2578.8 |
25 | 6515.8 | 1953.9 |
26 | 9147.1 | 2743.5 |
27 | 10,622.4 | 3186.0 |
28 | 7318.9 | 2195.1 |
29 | 4914.7 | 1473.7 |
30 | 6312.0 | 1892.7 |
31 | 10,572.9 | 3171.4 |
32 | 10,752.3 | 3225.0 |
33 | 13,380.0 | 4013.1 |
34 | 5630.4 | 1688.4 |
35 | 15,962.4 | 4788.2 |
36 | 11,243.1 | 3372.7 |
37 | 7535.0 | 2260.0 |
38 | 14,168.1 | 4249.6 |
39 | 11,013.5 | 3302.8 |
40 | 14,542.5 | 4361.8 |
Soil Radon VAR (All Data) | Soil Radon VAR (Outside the Mine) | Soil Radon VAR (Within the Mine) | |
---|---|---|---|
T, °C | r = 0.40 * | r = 0.61 * | No |
P, hPa | No | No | r = 0.46 ** |
U, % | r = −0.35 ** | r = −0.50 * | No |
T, °C av. 1 h | r = 0.41 * | r = 0.62 * | No |
T, °C av. 2 h | r = 0.44 * | r = 0.62 * | No |
T, °C av. 3 h | r = 0.44 * | r = 0.61 * | No |
RFD | Median | Max | Min | Interval | Percent over 80 | |
---|---|---|---|---|---|---|
All data | ||||||
Distance to old mine | r = 0.46 * | r = 0.45 * | r = 0.34 ** | r = 0.56 * | No | r = 0.49 * |
Distance to new mine | r = −0.49 * | r = −0.47 * | r = −0.43 * | r = −0.52 * | No | r = −0.50 * |
Distance to displacer fault | No | No | No | r = 0.29 ** | r = −0.40 * | No |
Within the mine | ||||||
Distance to new mine | r = −0.60 * | r = −0.58 * | r = −0.69 * | r = −0.47 ** | r = −0.76 * | r = −0.60 * |
Distance to displacer fault | r = −0.58 * | r = −0.56 * | r = −0.67 * | r = −0.44 ** | r = −0.75 * | r = −0.58 * |
Outside the mine | ||||||
Distance to old mine | r = 0.72 * | r = 0.72 * | r = 0.53 * | r = 0.77 * | No | r = 0.63 * |
Distance to new mine | r = −0.73 * | r = −0.72 * | r = −0.53 * | r = −0.77 * | No | r = −0.63 * |
Distance to displacer fault | r = 0.70 * | r = 0.69 * | r = 0.45 ** | r = 0.80 * | No | r = 0.66 * |
Research Point | Radon Statistics, mBq·m−2·s−1 | ||||||
---|---|---|---|---|---|---|---|
RFD | SE | Median | Max | Min | Interval | Percent over 80 | |
1 | 50.27 | 4.84 | 53 | 84 | 21 | 63 | 6.7 |
2 | 49.13 | 5.21 | 46 | 83 | 23 | 60 | 0.0 |
3 | 34.47 | 5.04 | 28 | 85 | 12 | 73 | 6.7 |
4 | 58.53 | 5.13 | 55 | 99 | 27 | 72 | 20.0 |
5 | 44.27 | 4.52 | 46 | 69 | 12 | 57 | 0.0 |
6 | 39.33 | 7.28 | 30 | 101 | 10 | 91 | 20.0 |
7 | 47.73 | 3.96 | 43 | 73 | 30 | 43 | 0.0 |
8 | 67.20 | 5.15 | 64 | 95 | 26 | 69 | 33.3 |
9 | 54.53 | 6.51 | 52 | 102 | 10 | 92 | 13.3 |
10 | 43.53 | 5.18 | 44 | 72 | 10 | 62 | 0.0 |
15 | 70.60 | 3.97 | 71 | 98 | 43 | 55 | 26.7 |
16 | 65.07 | 4.52 | 61 | 101 | 41 | 60 | 20.0 |
17 | 58.87 | 4.83 | 59 | 91 | 30 | 61 | 13.3 |
18 | 51.40 | 8.09 | 44 | 144 | 24 | 120 | 13.3 |
19 | 81.13 | 6.01 | 86 | 136 | 47 | 89 | 53.3 |
20 | 67.67 | 6.32 | 67 | 113 | 32 | 81 | 33.3 |
21 | 74.27 | 7.05 | 67 | 124 | 40 | 84 | 33.3 |
22 | 73.47 | 6.15 | 67 | 137 | 35 | 102 | 40.0 |
23 | 48.87 | 6.83 | 42 | 113 | 17 | 96 | 13.3 |
24 | 49.87 | 6.65 | 50 | 86 | 12 | 74 | 20.0 |
41 | 64.80 | 2.63 | 69 | 78 | 46 | 32 | 0.0 |
42 | 76.93 | 4.17 | 77 | 113 | 57 | 56 | 33.3 |
43 | 85.83 | 4.59 | 84 | 115 | 66 | 49 | 66.7 |
44 | 87.57 | 2.45 | 84.5 | 115 | 78 | 37 | 85.7 |
45 | 83.64 | 4.15 | 81.5 | 116 | 59 | 57 | 71.4 |
46 | 82.07 | 3.77 | 80.5 | 108 | 64 | 44 | 50.0 |
Research Point | Radon Statistics, mBq·m−2·s−1 | ||||||
---|---|---|---|---|---|---|---|
RFD | SE | Median | Max | Min | Interval | Percent over 80 | |
11 | 81.13 | 7.33 | 78 | 160 | 50 | 110 | 40.0 |
12 | 86.07 | 5.87 | 82 | 126 | 55 | 71 | 53.3 |
13 | 77.53 | 4.73 | 77 | 124 | 45 | 79 | 33.3 |
14 | 83.87 | 6.89 | 82 | 137 | 53 | 84 | 53.3 |
25 | 60.67 | 5.22 | 64 | 90 | 29 | 61 | 20.0 |
26 | 71.20 | 6.08 | 68 | 123 | 42 | 81 | 26.7 |
27 | 40.27 | 5.51 | 33 | 80 | 13 | 67 | 6.7 |
28 | 56.33 | 5.23 | 54 | 101 | 25 | 76 | 13.3 |
29 | 46.33 | 4.32 | 44 | 76 | 12 | 64 | 0.0 |
30 | 41.80 | 5.71 | 36 | 83 | 12 | 71 | 6.7 |
31 | 52.40 | 4.82 | 52 | 88 | 19 | 69 | 6.7 |
32 | 35.00 | 3.63 | 38 | 64 | 13 | 51 | 0.0 |
33 | 42.00 | 3.55 | 45 | 60 | 14 | 46 | 0.0 |
34 | 68.47 | 6.46 | 72 | 109 | 34 | 75 | 33.3 |
35 | 49.40 | 5.75 | 50 | 84 | 18 | 66 | 13.3 |
36 | 38.73 | 4.30 | 37 | 74 | 15 | 59 | 0.0 |
37 | 37.67 | 3.51 | 36 | 61 | 18 | 43 | 0.0 |
38 | 48.00 | 3.15 | 46 | 69 | 28 | 41 | 0.0 |
39 | 39.33 | 3.65 | 32 | 62 | 22 | 40 | 0.0 |
40 | 81.47 | 6.26 | 78 | 118 | 43 | 75 | 46.7 |
Average | Min | Max | Range | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | P | U | T | P | U | T | P | U | T | P | U | |
All data | ||||||||||||
RFD | No | r = −0.37 * | No | No | r = −0.36 * | No | No | r = −0.36 * | No | No | No | No |
Median | No | r = −0.33 ** | No | No | r = −0.32 ** | No | No | r = −0.31 ** | No | No | No | No |
Max | r = 0.34 ** | r = −0.50 * | No | r = 0.36 * | r = −0.49 * | No | r = 0.37 * | r = −0.50 * | No | No | No | No |
Min | No | No | r = 0.30 ** | No | No | r = 0.30 ** | No | No | No | No | No | No |
Interval | r = 0.43 * | r = −0.45 * | No | r = 0.43 * | r = −0.45 * | No | r = 0.46 * | r = −0.46 * | No | r = 0.33 ** | No | No |
Percent over 80 | No | r = −0.33 ** | No | No | r = −0.32 ** | No | No | r = −0.33 * | No | No | No | No |
Outside the mine | ||||||||||||
RFD | No | No | No | No | No | No | No | No | No | No | No | r = −0.39 ** |
Median | No | No | No | No | No | No | No | No | No | No | No | No |
Max | No | No | No | No | No | No | No | No | No | No | No | No |
Min | No | No | No | No | No | r = 0.43 ** | No | No | No | No | No | r = −0.42 ** |
Interval | No | No | No | No | No | No | No | No | No | r = 0.47 ** | No | No |
Percent over 80 | No | No | No | No | No | No | No | No | No | No | No | r = −0.43 ** |
Within the mine | ||||||||||||
RFD | r = 0.91 * | r = −0.92 * | No | r = 0.91 * | r = −0.92 * | No | r = 0.91 * | r = −0.92 * | No | No | r = 0.67 * | No |
Median | r = 0.88 * | r = −0.88 * | No | r = 0.88 * | r = −0.88 * | No | r = 0.88 * | r = −0.88 * | No | No | r = 0.63 * | No |
Max | r = 0.90 * | r = −0.88 * | No | r = 0.91 * | r = −0.88 * | No | r = 0.89 * | r = −0.88 * | No | No | r = 0.66 * | No |
Min | r = 0.88 * | r = −0.89 * | No | r = 0.85 * | r = −0.88 * | No | r = 0.88 * | r = −0.88 * | No | No | r = 0.75 * | No |
Interval | r = 0.75 * | r = −0.71 * | No | r = 0.79 * | r = −0.72 * | No | r = 0.74 * | r = −0.73 * | No | No | r = 0.46 ** | No |
Percent over 80 | r = 0.93 * | r = −0.95 * | No | r = 0.92 * | r = −0.94 * | No | r = 0.94 * | r = −0.94 * | No | No | r = 0.64 * | No |
All Measurements | Within Mine | Outside Mine | ||||
---|---|---|---|---|---|---|
Soil Air VAR | RFD | Soil Air VAR | RFD | Soil Air VAR | RFD | |
Observed | −0.093866 | 0.574609 | 0.001870 | 0.380507 | −0.085938 | 0.748294 |
Expected | −0.022222 | −0.022222 | −0.052632 | −0.052632 | −0.040000 | −0.040000 |
Standard Deviation | 0.018784 | 0.019254 | 0.029452 | 0.030485 | 0.046699 | 0.049477 |
z-score | −0.522736 | 4.301207 | 0.317583 | 2.480769 | −0.212578 | 3.543949 |
p-value | 0.601158 | 0.000017 | 0.750802 | 0.013110 | 0.831656 | 0.000394 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leshukov, T.; Legoshchin, K.; Larionov, A. A Case Study of the Radon Hazard at the Boundary of a Coal Minefield. Appl. Sci. 2023, 13, 13188. https://doi.org/10.3390/app132413188
Leshukov T, Legoshchin K, Larionov A. A Case Study of the Radon Hazard at the Boundary of a Coal Minefield. Applied Sciences. 2023; 13(24):13188. https://doi.org/10.3390/app132413188
Chicago/Turabian StyleLeshukov, Timofey, Konstantin Legoshchin, and Aleksey Larionov. 2023. "A Case Study of the Radon Hazard at the Boundary of a Coal Minefield" Applied Sciences 13, no. 24: 13188. https://doi.org/10.3390/app132413188
APA StyleLeshukov, T., Legoshchin, K., & Larionov, A. (2023). A Case Study of the Radon Hazard at the Boundary of a Coal Minefield. Applied Sciences, 13(24), 13188. https://doi.org/10.3390/app132413188