Experimental Studies on Pore Structure and the Gas Content Evolution Mechanisms of Shale Gas Reservoirs at Different Burial Depths in the Longmaxi Formation, Southern Sichuan Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Background
2.2. Basic Property Measurements
2.3. Pressure-Holding Coring Technique
2.4. Field Emission-Scanning Electron Microscopy (FE-SEM)
2.5. Saturated Methane NMR of Plug-Sized Shale Samples
2.6. Gravimetric Adsorption of Crushed Shale
3. Results
3.1. Basic Properties
3.2. On-Site Desorption Gas Content from Pressure-Holding Coring
3.3. FE-SEM Characteristics of Shale Reservoirs with Different Burial Depths
3.4. NMR T2 Spectrum with Different Pressures and Temperatures
3.5. Adsorption Capacity in Crushed Shale Core
4. Discussion
4.1. Comparison of the Total Gas Content Tests Using Different Methods
4.1.1. Traditional Method
4.1.2. NMR Method
4.1.3. Results Comparison
4.2. Influence of Burial Depth on the Development of Pore Structure
4.2.1. Pore Proportion and OM Pore Size Distribution
4.2.2. Controlling the Mechanism of Burial Depth and the Development of Pores
4.3. Characteristics and Influencing Factors of Free Gas and Adsorbed Gas in Shale Reservoirs at Different Burial Depths
4.3.1. Gas Contents of Shale Reservoirs at Different Burial Depths
4.3.2. Gas-in-Place Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerr, R.A. Natural gas from shale bursts onto the scene. Science 2010, 328, 1624–1626. [Google Scholar] [CrossRef] [PubMed]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T. Organic matter-hosted pore system, Marcellus Formatior (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Zhao, D.; Guo, Y.; Wang, G.; Zhou, X.; Zhou, Y.; Zhang, J.; Ren, G. Organic matter enrichment mechanism of Youganwo Formation oil shale in the Maoming Basin. Heliyon 2023, 9, e13173. [Google Scholar] [CrossRef] [PubMed]
- Pommer, M.; Milliken, K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, Southern Texas. AAPG Bull. 2015, 99, 1713–1744. [Google Scholar] [CrossRef]
- Zhang, K.; Song, Y.; Jia, C.; Jiang, Z.; Han, F.; Wang, P.; Yuan, X.; Yang, Y.; Zeng, Y.; Li, Y.; et al. Formation mechanism of the sealing capacity of the roof and floor strata of marine organic-rich shale and shale itself, and its influence on the characteristics of shale gas and organic matter pore development. Mar. Pet. Geol. 2022, 140, 105647. [Google Scholar] [CrossRef]
- Rani, S.; Prusty, B.K.; Pal, S.K. Methane adsorption and pore characterization of Indian shale samples. J. Unconv. Oil Gas Resour. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American Shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Ma, X.H.; Xie, J.; Yong, R.; Zhu, Y.Q. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China. Petro. Explor. Dev. 2020, 47, 841–855. [Google Scholar] [CrossRef]
- Zhou, J.P.; Yang, K.; Tian, S.F.; Zhou, L.; Xian, X.F.; Jiang, Y.D.; Liu, M.H.; Cai, J.C. CO2-water-shale interaction induced shale microstructural alteration. Fuel 2020, 263, 116642. [Google Scholar] [CrossRef]
- Luo, X.R.; Ren, X.J.; Wang, S.Z. Supercritical CO2-water-shale interactions and their effects on element mobilization and shale pore structure during stimulation. Int. J. Coal Geol. 2019, 202, 109–127. [Google Scholar] [CrossRef]
- Dai, X.G.; Wang, M.; Wei, C.T.; Zhang, J.J.; Wang, X.Q.; Zou, M.J. Factors affecting shale microscopic pore structure variation during interaction with supercritical CO2. J. CO2 Util. 2020, 38, 194–211. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Zhao, D.; Guo, Y.; Wang, G.; Guan, X.; Zhou, X.; Liu, J. Fractal Analysis and Classification of Pore Structures of High-Rank Coal in Qinshui Basin, China. Energies 2022, 15, 6766. [Google Scholar] [CrossRef]
- Gupta, N.; Mishra, B. Experimental investigation of the influence of bedding planes and differential stress on microcrack propagation in shale using X-Ray CT scan. Geotech. Geol. Eng. 2021, 39, 213–236. [Google Scholar] [CrossRef]
- Garum, M.; Glover, P.W.J.; Lorinczi, P.; Drummond-Brydson, R.; Hassanpour, A. Micro- and nano-scale pore structure in gas shale using Xμ-CT and FIB-SEM Techniques. Energy Fuels 2020, 34, 12340–12353. [Google Scholar] [CrossRef]
- Klaver, J.; Desbois, G.; Littke, R.; Urai, J.L. BIB-SEM pore characterization of mature and post mature Posidonia Shale samples from the Hils area, Germany. Int. J. Coal Geol. 2016, 158, 78–89. [Google Scholar] [CrossRef]
- Klaver, J.; Desbois, G.; Urai, J.L.; Littke, R. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany. Int. J. Coal Geol. 2012, 103, 12–25. [Google Scholar] [CrossRef]
- Rezaee, R.; Saeedi, A.; Clennell, B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J. Pet. Sci. Eng. 2012, 88–89, 92–99. [Google Scholar] [CrossRef]
- Klaver, J.; Desbois, G.; Littke, R.; Urai, J.L. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales. Mar. Petrol. Geol. 2015, 59, 451–466. [Google Scholar] [CrossRef]
- Strange, J.H.; Rahman, M.R.; Smith, E.G. Characterization of porous solids by NMR. Phys. Rev. Lett. 1993, 71, 3589–3591. [Google Scholar] [CrossRef]
- Blach, T.; Radlinski, A.P.; Vu, P.; Ji, Y.; Campo, L.D.; Gilbert, E.P.; Regenauer-Lieb, K.; Mastalerz, M. Accessibility of pores to methane in New Albany shale samples of varying maturity determined using SANS and USANS. Energies 2021, 14, 8438. [Google Scholar] [CrossRef]
- Neil, C.W.; Hjelm, R.P.; Hawley, M.E.; Watkins, E.B.; Cockreham, C.; Wu, D.; Mao, Y.; Fischer, T.B.; Stokes, M.R.; Xu, H. Small-angle neutron scattering (SANS) characterization of clay- and carbonate-rich shale at elevated pressures. Energy Fuels 2020, 34, 8178–8185. [Google Scholar] [CrossRef]
- Bahadur, J.; Chandra, D.; Das, A.; Vishal, V.; Agrawal, A.K.; Sen, D. Pore anisotropy in shale and its dependence on thermal maturity and organic carbon content: A scanning SAXS study. Int. J. Coal Geol. 2023, 273, 104268. [Google Scholar] [CrossRef]
- Löhr, S.C.; Baruch, E.T.; Hall, P.A.; Kennedy, M.J. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Org. Geochem. 2015, 87, 119–132. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, Y.; Dong, D.; Hu, Q.; Lei, Z.; Peng, H.; Gu, Y.; Ma, S.; Wang, Z.; Yin, X. Microscopic pore-fracture configuration and gas-filled mechanism of shale reservoirs in the western Chongqing area, Sichuan Basin, China. Pet. Explor. Dev. 2021, 48, 1063–1076. [Google Scholar] [CrossRef]
- Shi, Z.; Dong, D.; Wang, H.; Sun, S.; Wu, J. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China. Pet. Explor. Dev. 2020, 47, 829–840. [Google Scholar] [CrossRef]
- Michael, B.; Xia, W.W.; John, S. Shale gas play screening and evaluation criteria. China Pet. Explor. 2009, 14, 51–64. (In Chinese) [Google Scholar]
- Pan, Z.J.; Connell, L.D. Reservoir simulation of free and adsorbed gas production from shale. J. Nat. Gas Sci. Eng. 2015, 22, 359–370. [Google Scholar] [CrossRef]
- Wu, Y.H.; Cheng, L.S.; Huang, S.J.; Jia, P.; Zhang, J.; Lan, X.; Huang, H.L. A practical method for production data analysis from multistage fractured horizontal wells in shale gas reservoirs. Fuel 2016, 186, 821–829. [Google Scholar] [CrossRef]
- Sakurovs, R.; Day, S.; Weir, S.; Duffy, G. Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions. Energy Fuels 2007, 21, 992–997. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, J.; Liu, D.; Chen, J.; Pan, Z. A new application of NMR in characterization of multiphase methane and adsorption capacity of shale. Int. J. Coal Geol. 2019, 201, 76–85. [Google Scholar] [CrossRef]
- O’Neill, K.T.; Birt, B.; Hopper, T. Borehole measurements of adsorbed gas content in coals using stimulated diffusion nuclear magnetic resonance. Int. J. Coal Geol. 2021, 247, 103845. [Google Scholar] [CrossRef]
- Zhou, S.; Xue, H.; Ning, Y.; Guo, W.; Zhang, Q. Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. Fuel 2018, 211, 140–148. [Google Scholar] [CrossRef]
- Memon, A.; Li, A.; Memon, B.; Muther, T.; Han, W.; Kashif, M.; Tahir, M.; Akbar, I. Gas adsorption and controlling factors of shale: Review, application, comparison and challenges. Nat. Resour. Res. 2021, 30, 827–848. [Google Scholar] [CrossRef]
- Qian, C.; Li, X.; Zhang, Q.; Shen, W.; Guo, W.; Lin, W.; Han, L.; Cui, Y.; Huang, Y.; Pei, X.; et al. Reservoir characteristics of different shale lithofacies and their effects on the gas content of Wufeng-Longmaxi Formation, southern Sichuan Basin, China. Geoenergy Sci. Eng. 2023, 225, 2117017. [Google Scholar] [CrossRef]
- Gasparik, M.; Gensterblum, Y.; Ghanizadeh, A.; Weniger, P. High-pressure/high-temperature methane-sorption measurements on carbonaceous shales by the manometric method: Experimental and data-evaluation considerations for improved accuracy. SPE J. 2015, 20, 790–809. [Google Scholar] [CrossRef]
- Tian, H.; Li, T.; Zhang, T.; Xiao, X. Characterization of methane adsorption on overmature Lower Silurian–Upper Ordovician shales in Sichuan Basin, southwest China: Experimental results and geological implications. Int. J. Coal Geo. 2016, 156, 36–49. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, D.; Wang, H.; Li, X. A modified BET equation to investigate supercritical methane adsorption mechanisms in shale. Mar. Petrol. Geol. 2019, 105, 284–292. [Google Scholar] [CrossRef]
- Duan, S.; Gu, M.; Tao, M.; Xian, X. Adsorption of methane on shale: Statistical physics model and site energy distribution studies. Energy Fuels 2020, 34, 304–318. [Google Scholar] [CrossRef]
- Feng, G.; Zhu, Y.; Chen, S.; Wang, Y.; Ju, W.; Hu, Y.; You, Z.; Wang, G. Supercritical methane adsorption on shale over wide pressure and temperature ranges: Implications for gas-in-place estimation. Energy Fuels 2020, 34, 3121–3134. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, X.; Liang, L.; Zeng, Q. Methane adsorption on carbon models of the organic matter of organic-rich shales. Energy Fuels 2017, 31, 1489–1501. [Google Scholar] [CrossRef]
- Hu, Q.; Lan, R.; He, L.; Liu, H.; Pei, X. A critical review of adsorption isotherm models for aqueous contaminants: Curve characteristics, site energy distribution and common controversies. J. Environ. Manag. 2023, 329, 117104. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Conolly, P.; Liu, L.; Yang, X.; Robinson, N.; Li, M.; Mahmoud, M.; EI-Husseiny, A.; Verrall, M.; May, E.; et al. Quantitative characterization of methane adsorption in shale using low-field NMR. J. Nat. Gas Sci. Eng. 2022, 108, 104847. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, D. Adsorbed and free gas occurrence characteristics and controlling factors of deep shales in the southern Sichuan Basin, China. Pet. Sci. 2023, 20, 1301–1311. [Google Scholar] [CrossRef]
- Glorioso, J.C.; Rattia, A.J. Unconventional reservoirs: Basic petrophysical concepts for shale gas. In Proceedings of the SPE/EAGE European Unconventional Resources Conference and Exhibition from Potential to Production, Vienna, Austria, 20–22 March 2012. [Google Scholar]
- Kuila, U.; McCarty, D.K.; Derkowski, A.; Fischer, T.B.; Prasad, M. Total porosity measurement in gas shales by the water immersion porosimetry (WIP) method. Fuel 2014, 117, 1115–1129. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Xie, S. Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method. Int. J. Coal Geol. 2014, 131, 32–40. [Google Scholar] [CrossRef]
- Smith, D.M.; Williams, F.L. Direct method of determining the methane content of coal-a modification. Fuel 1984, 63, 425–427. [Google Scholar] [CrossRef]
- Yee, D.; Seidle, J.P.; Hanson, W.B. Gas sorption on coal and measurement of gas content. AAPG Stud Geol. 1993, 38, 203–218. [Google Scholar]
- Li, W.; Li, X.; Zhao, S.; Li, J.; Lu, S.; Liu, Y.; Huang, S.; Wang, Z.; Wang, J. Evaluation on carbon isotope fractionation and gas-in-place content based on pressure-holding coring technique. Fuel 2022, 315, 123243. [Google Scholar] [CrossRef]
- Han, W.; Li, A.; Memon, A.; Ma, M. Synergetic effect of water, temperature, and pressure on methane adsorption in shale gas reservoirs. ACS Omega 2021, 6, 2215–2229. [Google Scholar] [CrossRef]
- Huang, H.; Li, R.; Jiang, Z.; Li, J.; Chen, L. Investigation of variation in shale gas adsorption capacity with burial depth: Insights from the adsorption potential theory. J. Nat. Gas Sci. Eng. 2020, 73, 103043. [Google Scholar] [CrossRef]
- Hui, S.; Pang, X.; Chen, Z.; Hu, T.; Shi, K.; Di, G.; Li, M.; Mei, S.; Li, M. Quantifying the relative contribution and evolution of pore types to shale reservoir space: Constraints from over-mature marine shale in the Sichuan Basin, SW China. J. Asian. Earth Sci. 2023, 249, 105625. [Google Scholar] [CrossRef]
- Zhao, D.; Yin, S.; Guo, Y.; Ren, C.; Wang, R.; Ding, W.; Liu, J. Investigation of pore structure characteristics of marine organic-rich shales using low-pressure N2 adsorption experiments and fractal theory. Interpretation 2019, 7, 671–685. [Google Scholar] [CrossRef]
- Zou, C.; Dong, D.; Wang, Y.; Li, X.; Huang, J.; Wang, S.; Guan, Q.; Zhang, C.; Wang, H.; Liu, H.; et al. Shale gas in China:characteristics, challenges and prospects (II). Pet. Explor. Dev. 2016, 43, 166–178. [Google Scholar] [CrossRef]
- Sun, W.; Zou, Y.; Lin, Z.; Wu, Z.; Liu, H.; Lin, J.; Chen, B.; Chen, Q.; Pan, C.; Lan, B.; et al. Impact of tectonic deformation on shale pore structure using adsorption experiments and 3D digital core observation: A case study of the Niutitang Formation in Northern Guizhou. Energy 2023, 278, 127724. [Google Scholar] [CrossRef]
- SY/T5163-2010; Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-ray Diffraction. National Energy Administration: Beijing, China, 2010.
- SY/T 6940–2013; Measurement Method of Shale Gas Content. National Energy Administration: Beijing, China, 2013.
- Chen, Y.; Zhang, B.; Qin, Y.; Li, Z.; Yang, Z.; Wu, C.; Cao, C. Differences in CH4 and C2H6 carbon isotopic compositions from open and closed pores in coal: Implications for understanding the two-stage δ13C shift during canister desorption. Int. J. Coal. Geol. 2020, 230, 103586. [Google Scholar] [CrossRef]
- NB/T 10117-2018; Determination Methods of Methane Isothermal Adsorption Determination Methods of Methane Isothermal Adsorption. National Energy Administration: Beijing, China, 2018.
- Rexer, T.F.; Benham, M.J.; Aplin, A.C.; Thomas, K.M. Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy Fuels 2013, 27, 3099–3109. [Google Scholar] [CrossRef]
- Livo, K.; Saidian, M.; Prasad, M. Effect of paramagnetic mineral content and distribution on nuclear magnetic resonance surface relaxivity in organic-rich Niobrara and Haynesville shales. Fuel 2020, 269, 117417. [Google Scholar] [CrossRef]
- Katz, B.J.; Arango, I. Organic porosity: A geochemist’s view of the current state of understanding. Org. Geochem. 2018, 123, 1–16. [Google Scholar] [CrossRef]
- Ren, W.; Guo, J.; Zeng, F.; Wang, T. Modeling of high-pressure methane adsorption on wet shales. Energy Fuels 2019, 33, 7043–7051. [Google Scholar] [CrossRef]
- Fang, X.; Cai, Y.; Hu, Q.; Gao, P.; Liu, D.; Qian, Y. Effect of formation pressure on pore structure evolution and hydrocarbon expulsion in organic-rich marine shale. Processes 2023, 11, 1007. [Google Scholar] [CrossRef]
- Hu, H.; Hao, F.; Lin, J.; Lu, Y.; Ma, Y.; Li, Q. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China. Int. J. Coal. Geol. 2017, 173, 40–50. [Google Scholar] [CrossRef]
- Ju, J.; Jang, J.; Choi, M.; Beak, J. Effects of cavitation on performance of automotive torque converter. Adv. Mech. Eng. 2016, 8, 1687814016654045. [Google Scholar] [CrossRef]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Hamid, S.; Syed, M.M.; Maqsood, A.; Reza, R. Use of outcrop as substitute for subsurface shale: Current understanding of similarities, discrepancies, and associated challenges. Energy Fuels 2021, 35, 9151–9164. [Google Scholar]
- Ross, D.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Zhang, K.; Jia, C.; Song, Y.; Jiang, S.; Jiang, Z.; Wen, M.; Huang, Y.; Liu, X.; Jiang, T.; Peng, J.; et al. Analysis of Lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan Block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region. Fuel 2019, 263, 115978. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Liu, S.; Zhang, R. Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales. Fuel 2016, 181, 227–237. [Google Scholar] [CrossRef]
- Qu, Z.; Yin, Y.; Wang, H.; Zhang, J. Pore-scale investigation on coupled diffusion mechanisms of free and adsorbed gases in nanoporous organic matter. Fuel 2020, 260, 116423. [Google Scholar] [CrossRef]
- Zou, J.; Rezaee, R.; Xie, Q.; You, L. Characterization of the combined effect of high temperature and moisture on methane adsorption in shale gas reservoirs. J. Pet. Sci. Eng. 2019, 182, 106353. [Google Scholar] [CrossRef]
- Goral, J.; Panja, P.; Deo, M.; Andrew, M.; Linden, S.; Schwarz, J.; Wiegmann, A. Confinement effect on porosity and permeability of shales. Sci. Rep. 2020, 10, 49. [Google Scholar] [CrossRef]
- Ko, L.T.; Ruppel, S.C.; Loucks, R.G.; Hackley, P.C.; Zhang, T.W.; Shao, D.Y. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: Insights from laboratory thermal maturation and organic petrology. Int. J. Coal Geol. 2018, 190, 3–28. [Google Scholar] [CrossRef]
Sample ID | Depth m | TOC % | Quartz vol, % | Feldspar vol, % | Carbonate vol, % | Clays vol, % | Pyrite vol, % | Porosity % | PL MPa | VL m3/t |
---|---|---|---|---|---|---|---|---|---|---|
YS203 | 1643.55 | 4.64 | 50.00 | 5.60 | 16.90 | 22.20 | 3.80 | 7.18 | 3.07 | 5.24 |
YS138 | 1983.86 | 4.32 | 58.30 | 7.60 | 11.50 | 20.00 | 2.60 | 8.45 | 3.46 | 5.56 |
YS137 | 1032.86 | 4.13 | 47.10 | 12.80 | 18.80 | 17.60 | 3.70 | 7.95 | 2.49 | 5.66 |
W208 | 2746.78 | 4.81 | 44.10 | 14.10 | 13.90 | 23.20 | 4.70 | 6.28 | 5.08 | 3.67 |
W203 | 3177.56 | 5.64 | 50.60 | 12.60 | 13.80 | 20.40 | 2.80 | 6.97 | 8.96 | 3.81 |
W213 | 3746.19 | 4.37 | 40.19 | 10.26 | 27.00 | 20.96 | 1.59 | 5.84 | 5.98 | 2.88 |
L206 | 4034.66 | 5.01 | 57.89 | 5.48 | 8.30 | 21.83 | 4.50 | 5.47 | 5.52 | 1.97 |
L210 | 4274.95 | 4.63 | 46.89 | 6.09 | 14.78 | 27.70 | 4.54 | 5.25 | 5.64 | 2.29 |
L214 | 4325.03 | 4.78 | 52.28 | 9.27 | 13.52 | 20.09 | 4.84 | 6.18 | 4.73 | 2.50 |
Y2-7 | 4150.65 | 4.51 | 50.72 | 8.10 | 16.06 | 21.43 | 3.69 | 5.10 | 3.72 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Zhang, R.; Jiang, Y.; Fan, X.; Gu, Y. Experimental Studies on Pore Structure and the Gas Content Evolution Mechanisms of Shale Gas Reservoirs at Different Burial Depths in the Longmaxi Formation, Southern Sichuan Basin. Appl. Sci. 2023, 13, 13194. https://doi.org/10.3390/app132413194
Fu Y, Zhang R, Jiang Y, Fan X, Gu Y. Experimental Studies on Pore Structure and the Gas Content Evolution Mechanisms of Shale Gas Reservoirs at Different Burial Depths in the Longmaxi Formation, Southern Sichuan Basin. Applied Sciences. 2023; 13(24):13194. https://doi.org/10.3390/app132413194
Chicago/Turabian StyleFu, Yonghong, Renjing Zhang, Yuqiang Jiang, Xiangyu Fan, and Yifan Gu. 2023. "Experimental Studies on Pore Structure and the Gas Content Evolution Mechanisms of Shale Gas Reservoirs at Different Burial Depths in the Longmaxi Formation, Southern Sichuan Basin" Applied Sciences 13, no. 24: 13194. https://doi.org/10.3390/app132413194
APA StyleFu, Y., Zhang, R., Jiang, Y., Fan, X., & Gu, Y. (2023). Experimental Studies on Pore Structure and the Gas Content Evolution Mechanisms of Shale Gas Reservoirs at Different Burial Depths in the Longmaxi Formation, Southern Sichuan Basin. Applied Sciences, 13(24), 13194. https://doi.org/10.3390/app132413194