Finite Element Analysis of Energy-Absorbing Floors for Reducing Head Injury Risk during Fall Accidents
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation and Mechanical Tests
2.2. Finite Element Models of Head and Energy-Absorbing Floors
2.3. Data Analysis and Accident Reconstruction Case
3. Results
3.1. Validation of Energy-Absorbing Floors Model Using Drop Tests
3.2. Comparison of Head Kinematics and Injuries
3.3. Comparison of Energy Absorption and Floor Deformation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pfortmueller, C.A.; Kunz, M.; Lindner, G.; Zisakis, A.; Puig, S.; Exadaktylos, A.K. Fall-related emergency department admission: Fall environment and settings and related injury patterns in 6357 patients with special emphasis on the elderly. Sci. World J. 2014, 2014, 256519. [Google Scholar] [CrossRef]
- Mackey, D.C.; Lachance, C.C.; Wang, P.T.; Feldman, F.; Laing, A.C.; Leung, P.M.; Hu, X.J.; Robinovitch, S.N. The Flooring for Injury Prevention (Flip) Study of compliant flooring for the prevention of fall-related injuries in long-term care: A randomized trial. PLoS Med. 2019, 16, e1002843. [Google Scholar] [CrossRef] [PubMed]
- Kannus, P.; Parkkari, J.; Koskinen, S.; Niemi, S.; Palvanen, M.; Järvinen, M.; Vuori, I. Fall-induced injuries and deaths among older adults. Jama 1999, 281, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.A.; Bell, J.M.; Haileyesus, T.; Gilchrist, J.; Sugerman, D.E.; Coronado, V.G. Nonfatal playground-related traumatic brain injuries among children, 2001–2013. Pediatrics 2016, 137, e20152721. [Google Scholar] [CrossRef]
- Beedham, W.; Peck, G.; Richardson, S.E.; Tsang, K.; Fertleman, M.; Shipway, D.J. Head injury in the elderly–an overview for the physician. Clin. Med. 2019, 19, 177. [Google Scholar] [CrossRef]
- Kannus, P.; Niemi, S.; Parkkari, J.; Mattila, V.; Sievänen, H. Fall-induced hospital-treated traumatic brain injuries among elderly Finns in 1970–2017. Arch. Gerontol. Geriatr. 2020, 86, 103958. [Google Scholar] [CrossRef] [PubMed]
- Adekoya, N.; Thurman, D.J.; Webb, K.W.; White, D.D. Surveillance for traumatic brain injury deaths—United States, 1989–1998. MMWR Surveill. Summ. 2002, 51, 1–14. [Google Scholar]
- Lachance, C.C.; Jurkowski, M.P.; Dymarz, A.C.; Robinovitch, S.N.; Feldman, F.; Laing, A.C.; Mackey, D.C. Compliant flooring to prevent fall-related injuries in older adults: A scoping review of biomechanical efficacy, clinical effectiveness, cost-effectiveness, and workplace safety. PLoS ONE 2017, 12, e0171652. [Google Scholar] [CrossRef]
- Laing, A.C.; Tootoonchi, I.; Hulme, P.A.; Robinovitch, S.N. Effect of compliant flooring on impact force during falls on the hip. J. Orthop. Res. 2006, 24, 1405–1411. [Google Scholar] [CrossRef]
- Laing, A.C.; Robinovitch, S.N. Low stiffness floors can attenuate fall-related femoral impact forces by up to 50% without substantially impairing balance in older women. Accid. Anal. Prev. 2009, 41, 642–650. [Google Scholar] [CrossRef]
- Wright, A.D.; Laing, A.C. The influence of novel compliant floors on balance control in elderly women—A biomechanical study. Accid. Anal. Prev. 2011, 43, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.D.; Laing, A.C. The influence of headform orientation and flooring systems on impact dynamics during simulated fall-related head impacts. Med. Eng. Phys. 2012, 34, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Hanger, H.C. Low-impact flooring: Does it reduce fall-related injuries? J. Am. Med. Dir. Assoc. 2017, 18, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Wang, F.; Wang, B.; Li, G.; Li, F. A computational biomechanics human body model coupling finite element and multibody segments for assessment of head/brain injuries in car-to-pedestrian collisions. Int. J. Environ. Res. Public Health 2020, 17, 492. [Google Scholar] [CrossRef] [PubMed]
- Fahlstedt, M.; Kleiven, S.; Li, X. Current playground surface test standards underestimate brain injury risk for children. J. Biomech. 2019, 89, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Alshareef, A.; Giudice, J.S.; Panzer, M.B. Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model. Ann. Biomed. Eng. 2019, 47, 1908–1922. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.E.; Urban, J.E.; Stitzel, J.D. Development and Validation of an Atlas-Based Finite Element Brain Model. Biomech. Model. Mechanobiol. 2016, 15, 1201–1214. [Google Scholar] [CrossRef]
- Sahoo, D.; Deck, C.; Willinger, R. Development and Validation of an Advanced Anisotropic Visco-Hyperelastic Human Brain Fe Model. J. Mech. Behav. Biomed. Mater. 2014, 33, 24–42. [Google Scholar] [CrossRef]
- Miller, K. Constitutive Model of Brain Tissue Suitable for Finite Element Analysis of Surgical Procedures. J. Biomech. 1999, 32, 531–537. [Google Scholar] [CrossRef]
- Giudice, J.S.; Zeng, W.; Wu, T.; Alshareef, A.; Shedd, D.F.; Panzer, M.B. An analytical review of the numerical methods used for finite element modeling of traumatic brain injury. Ann. Biomed. Eng. 2019, 47, 1855–1872. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Zhang, L.; Jiang, B.; Genthikatti, V.V.; Jin, X.; Zhu, F.; Makwana, R.; Gill, A.; Jandir, G.; Singh, A. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 2013, 135, 111002. [Google Scholar] [CrossRef] [PubMed]
- Ghajari, M.; Hellyer, P.J.; Sharp, D.J. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain 2017, 140, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Kleiven, S. Predictors for Traumatic Brain Injuries Evaluated through Accident Reconstructions. In Proceedings of the 51st Stapp Car Crash Conference, San Diego, CA, USA, 29–31 October 2007. [Google Scholar]
- Li, X.; Kleiven, S. Improved safety standards are needed to better protect younger children at playgrounds. Sci. Rep. 2018, 8, 15061. [Google Scholar] [CrossRef]
- Atsumi, N.; Nakahira, Y.; Iwamoto, M. Development and validation of a head/brain FE model and investigation of influential factor on the brain response during head impact. Int. J. Veh. Saf. 2016, 9, 1–23. [Google Scholar] [CrossRef]
- Baeck, K.; Vander Sloten, J.; Goffin, J. Biomechanical Modeling of Head Impacts: A Critical Analysis of Finite Element Modeling Approaches (Biomechanische Modellering van Hoofdimpacten: Een Kritische Analyse van Eindige Elementen Modelleringsmethoden). Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2013. [Google Scholar]
- Duncan, O.; Shepherd, T.; Moroney, C.; Foster, L.; Venkatraman, P.D.; Winwood, K.; Allen, T.; Alderson, A. Review of auxetic materials for sports applications: Expanding options in comfort and protection. Appl. Sci. 2018, 8, 941. [Google Scholar] [CrossRef]
- Horgan, T.J.; Gilchrist, M.D. Influence of FE model variability in predicting brain motion and intracranial pressure changes in head impact simulations. Int. J. Crashworthiness 2004, 9, 401–418. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Kleiven, S. Fluid–structure interaction simulation of the brain–skull interface for acute subdural haematoma prediction. Biomech. Model. Mechanobiol. 2019, 18, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ji, S. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles. Biomech. Model. Mechanobiol. 2017, 16, 449–461. [Google Scholar] [CrossRef]
- ISO 37:2017; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. International Organization for Standardization: Geneva, Switzerland, 2017.
- Kleiven, S. Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int. J. Crashworthiness 2006, 11, 65–79. [Google Scholar] [CrossRef]
- Kleiven, S. Influence of direction and duration of impacts to the human head evaluated using the finite element method. In Proceedings of the IRCOBI Conference, Prague, Czech Republic, 21–23 September 2005. [Google Scholar]
- ASTM F1292-22; Standard Specification for Impact Attenuation of Surfacing Materials within the Use Zone of Playground Equipment. ASTM International: West Conshohocken, PA, USA, 2022.
- Beckwith, J.G.; Greenwald, R.M.; Chu, J.J. Measuring head kinematics in football: Correlation between the head impact telemetry system and Hybrid III headform. Ann. Biomed. Eng. 2012, 40, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Padgaonkar, A.J.; Krieger, K.; King, A. Measurement of angular acceleration of a rigid body using linear accelerometers. J. Appl. Mech. Sep. 1975, 42, 552–556. [Google Scholar] [CrossRef]
- Lindgren, N.; Halldin, P.; Fahlstedt, M. Influence of Headform on Assessments and Ratings of the Protective Performance of Bicycle Helmets. In Proceedings of the IRCOBI Conference, Porto, Portugal, 14–16 September 2022. [Google Scholar]
- Gehre, C.; Gades, H.; Wernicke, P. Objective rating of signals using test and simulation responses. In Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV), Stuttgart, Germany, 15 June 2009. [Google Scholar]
- Barbat, S.; Fu, Y.; Zhan, Z.; Yang, R.-J.; Gehre, C. Objective rating metric for dynamic systems. In Proceedings of the 23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV), Seoul, Republic of Korea, 27–30 May 2013; p. 2. [Google Scholar]
- Untaroiu, C.; Shin, J.; Lu, Y.-C. Assessment of a dummy model in crash simulations using rating methods. Int. J. Automot. Technol. 2013, 14, 395–405. [Google Scholar] [CrossRef]
- Gierczycka, D.; Cronin, D. Investigation of Injury Metric Sensitivity to Thorax Impact Loading Using a Human Body Model. In Proceedings of the IRCOBI Conference, Berlin, Germany, 10–12 September 2014. [Google Scholar]
- Decker, W.; Baker, A.; Ye, X.; Brown, P.; Stitzel, J.; Gayzik, F.S. Development and multi-scale validation of a finite element football helmet model. Ann. Biomed. Eng. 2020, 48, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Bastien, C.; Diederich, A.; Christensen, J.; Ghaleb, S. Improving correlation accuracy of crashworthiness applications by combining the CORA and MADM methods. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 236, 3192–3200. [Google Scholar] [CrossRef]
- Versace, J. A review of the severity index. In Proceedings of the 15th Stapp Car Crash Conference, Coronado, CA, USA, 17–19 November 1971. [Google Scholar]
- Panzer, M.B.; Myers, B.S.; Capehart, B.P.; Bass, C.R. Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 2012, 40, 1530–1544. [Google Scholar] [CrossRef]
- Kleiven, S. Why most traumatic brain injuries are not caused by linear acceleration but skull fractures are. Front. Bioeng. Biotechnol. 2013, 1, 15. [Google Scholar] [CrossRef] [PubMed]
- Gabler, L.F.; Crandall, J.R.; Panzer, M.B. Assessment of kinematic brain injury metrics for predicting strain responses in diverse automotive impact conditions. Ann. Biomed. Eng. 2016, 44, 3705–3718. [Google Scholar] [CrossRef]
- Fahlstedt, M.; Halldin, P.; Kleiven, S. The protective effect of a helmet in three bicycle accidents—A finite element study. Accid. Anal. Prev. 2016, 91, 135–143. [Google Scholar] [CrossRef]
- Chan, P.; Lu, Z.; Rigby, P.; Takhounts, E.; Zhang, J.; Yoganandan, N.; Pintar, F. Development of generalized linear skull fracture criterion. In Proceedings of the 20th International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV), Lyon, France, 18–21 June 2007. [Google Scholar]
- Fahlstedt, M.; Meng, S.; Kleiven, S. Influence of Strain Post-Processing on Brain Injury Prediction. J. Biomech. 2022, 132, 110940. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, M.D.; Doorly, M.C. An in-depth analysis of real world fall accidents involving brain trauma. In The Pathomechanics of Tissue Injury and Disease, and the Mechanophysiology of Healing; Gefen, A., Ed.; Research Signpost: Tel Aviv, Israel, 2009; Chapter 2; pp. 19–66. [Google Scholar]
- Ozturk, U.E.; Anlas, G. Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading. Mater. Des. 2011, 32, 773–780. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, H.; Wang, Y.; Zhou, H.; Peng, X. Modelling energy dissipation and hysteresis of woven fabrics with large deformation under single loading-unloading cycle. Compos. Struct. 2022, 279, 114781. [Google Scholar] [CrossRef]
- Di Landro, L.; Sala, G.; Olivieri, D. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polym. Test. 2002, 21, 217–228. [Google Scholar] [CrossRef]
- Gent, A.N. Elastic stability of rubber compression springs. J. Mech. Eng. Sci. 1964, 6, 318–326. [Google Scholar] [CrossRef]
- Glinka, M.N.; Karakolis, T.; Callaghan, J.P.; Laing, A.C. Characterization of the protective capacity of flooring systems using force-deflection profiling. Med. Eng. Phys. 2013, 35, 108–115. [Google Scholar] [CrossRef]
- Drahota, A.; Felix, L.M.; Raftery, J.; Keenan, B.E.; Lachance, C.C.; Mackey, D.C.; Markham, C.; Laing, A.C. The SAFEST review: A mixed methods systematic review of shock-absorbing flooring for fall-related injury prevention. BMC Geriatr. 2022, 22, 1–28. [Google Scholar] [CrossRef]
- Lachance, C.C.; Feldman, F.; Laing, A.C.; Leung, P.M.; Robinovitch, S.N.; Mackey, D.C. Study protocol for the Flooring for Injury Prevention (FLIP) Study: A randomised controlled trial in long-term care. Inj. Prev. 2016, 22, 453–460. [Google Scholar] [CrossRef]
- Whyte, T.; Stuart, C.; Mallory, A.; Ghajari, M.; Plant, D.; Siegmund, G.P.; Cripton, P.A. A review of impact testing methods for headgear in sports: Considerations for improved prevention of head injury through research and standards. J. Biomech. Eng. 2019, 141, 070803. [Google Scholar] [CrossRef]
- Ghajari, M.; Peldschus, S.; Galvanetto, U.; Iannucci, L. Effects of the presence of the body in helmet oblique impacts. Accid. Anal. Prev. 2013, 50, 263–271. [Google Scholar] [CrossRef]
- Verschueren, P. Biomechanical Analysis of Head Injuries Related to Bicycle Accidents and a New Bicycle Helmet Concept (Biomechanische Analyse van Hoofdletsels Gerelateerd aan Fietsongevallen en een Nieuw Fietshelmconcept). Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2009. [Google Scholar]
- Shewchenko, N.; Withnall, C.; Keown, M.; Gittens, R.; Dvorak, J. Heading in football. Part 2: Biomechanics of ball heading and head response. Br. J. Sports Med. 2005, 39, i26–i32. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.A.; Beusenberg, M.C.; Shewchenko, N.; Withnall, C.; Fournier, E. Verification of biomechanical methods employed in a comprehensive study of mild traumatic brain injury and the effectiveness of American football helmets. J. Biomech. 2005, 38, 1469–1481. [Google Scholar] [CrossRef]
- Beusenberg, M.; Shewchenko, N.; Newman, J.; de Lange, R.; Cappon, H. Head, neck, and body coupling in reconstructions of helmeted head impacts. Int. Res. Counc. Biomech. Impact Isle Man UK 2001, 95, 295–310. [Google Scholar]
- Avalle, M.; Belingardi, G.; Ibba, A. Mechanical models of cellular solids: Parameters identification from experimental tests. Int. J. Impact Eng. 2007, 34, 3–27. [Google Scholar] [CrossRef]
- Gibson, L.J. Cellular solids. Mrs Bull. 2003, 28, 270–274. [Google Scholar] [CrossRef]
- Nagy, A.; Ko, W.; Lindholm, U. Mechanical behavior of foamed materials under dynamic compression. J. Cell. Plast. 1974, 10, 127–134. [Google Scholar] [CrossRef]
Igelkott Floor | Kradal | SmartCells | OmniSports | |
---|---|---|---|---|
Poisson’s ratio | 0.49 | 0.01 | 0.49 | 0.3 |
Hysteresis unloading factor | 0.2 | 0.15 | 0.2 | 0.05 |
Unloading shape factor | 4.0 | 4.0 | 4.0 | 5.0 |
Thickness (mm) | 23 | 13 | 25 | 8.5 |
Corridor | Shape | Size | Phase Shift | Overall | |
---|---|---|---|---|---|
Igelkott Floor | 0.977 | 0.996 | 0.883 | 1.0 | 0.979 |
Kradal | 0.982 | 0.980 | 0.907 | 1.0 | 0.966 |
SmartCells | 0.976 | 0.985 | 0.994 | 1.0 | 0.993 |
OmniSports | 0.937 | 0.964 | 0.814 | 1.0 | 0.936 |
HIC | Peak Angular Velocity [rad/s] | Peak von Mises Stress [MPa] | Peak 1st Principal Strain | Risk of Skull Fracture * | Risk of Concussion ** | |
---|---|---|---|---|---|---|
Igelkott | 2400 | 18 | 47 | 0.171 | 0.947 | 0.375 |
Kradal | 3493 | 23 | 70 | 0.216 | 0.984 | 0.703 |
SmartCell | 1304 | 24 | 27 | 0.225 | 0.456 | 0.765 |
OmniSports | 4356 | 20 | 72 | 0.209 | 0.991 | 0.652 |
Concrete | 10,507 | 25 | 80 | 0.253 | 0.999 | 0.901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Kleiven, S. Finite Element Analysis of Energy-Absorbing Floors for Reducing Head Injury Risk during Fall Accidents. Appl. Sci. 2023, 13, 13260. https://doi.org/10.3390/app132413260
Huang Q, Kleiven S. Finite Element Analysis of Energy-Absorbing Floors for Reducing Head Injury Risk during Fall Accidents. Applied Sciences. 2023; 13(24):13260. https://doi.org/10.3390/app132413260
Chicago/Turabian StyleHuang, Qi, and Svein Kleiven. 2023. "Finite Element Analysis of Energy-Absorbing Floors for Reducing Head Injury Risk during Fall Accidents" Applied Sciences 13, no. 24: 13260. https://doi.org/10.3390/app132413260
APA StyleHuang, Q., & Kleiven, S. (2023). Finite Element Analysis of Energy-Absorbing Floors for Reducing Head Injury Risk during Fall Accidents. Applied Sciences, 13(24), 13260. https://doi.org/10.3390/app132413260