Robust Speed Control of a Multi-Mass System: Analytical Tuning and Sensitivity Analysis
Abstract
:1. Introduction
2. System Modeling
2.1. Modeling of VEL Test Rig
- The angular speed of the electrical loading machine (ωM);
- The difference between the loading machine angular position (θM) and the wheel-hub angular position (θW);
- The angular speed of the wheel-hub (ωW);
- The difference between wheel-hub angular position (θW) and the differential gear output angular position (θSx);
- The angular speed of the differential gear output (ωSx).
2.2. Time Delay Model
3. Development of the Control Algorithm
3.1. Controller Design
3.2. Frequency Analysis
3.2.1. Stability Analysis
3.2.2. Measurement Noise Amplification
4. Simulation Results
4.1. Time-Domain Analysis
4.2. Sensitivity Analysis for a Single Parameter Uncertainty
4.3. Sensitivity Analysis for Multiple Parameter Uncertainties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Description |
CV | Constant velocity shaft |
DAx | Axle internal damping |
DS | CV shaft internal damping |
H | Open-loop transfer function |
id | Differential gear ratio |
ig | Transmission gear ratio |
I-SS | State-space with integral action |
JE | Vehicle electric motor inertia |
JG | Gearbox inertia |
JM | Electric machine inertia |
JPt2W | Front axle inertia plus half of the powertrain equivalent inertia |
JS | Shaft inertia around its longitudinal axis |
JT | Equivalent inertia of the electrical loading machine and the continuous velocity shaft |
JW | Wheel-hub inertia |
k∆ω | Viscous friction factor |
KAx | Axle stiffness |
ki | Integral gain |
KLQ | Full-state feedback gain matrix for the LQ controller |
KLQI | Full-state feedback gain matrix for the LQI controller |
kM | Friction moment factor |
kp | Proportional gain |
Ks | Shaft equivalent rotational stiffness |
LLQ | Luenberger observer gain matrix for LQ controller |
LLQI | Luenberger observer gain matrix for LQI controller |
LQ | Linear-quadratic |
LQI | Linear-quadratic with integral action |
M(s) | Measurement time delay transfer function |
Mdrive | Total powertrain driving moment |
Me | Electric motor moment |
MF | Coulomb friction moment |
MM | Electrical loading machine moment |
MPC | Model predictive control |
MSv | Maximum sensitivity |
MSx | Final output moment at one side of the differential gear |
PI | Proportional-integral-controller |
PI-SS | PI with state-space feedbacks |
S | Sensitivity transfer function |
SS | State-space |
Td | Time delay in the moment control loop |
Tm | Measurement time delay |
VEL | VEhicle-in-the-Loop |
VHiL | Vehicle-in-the-loop |
VUT | Vehicle under test |
y | Measured system’s output |
yd | Reference input for the controller |
∆ωD | Angular speed difference between the differential gear outputs |
θD | The differential gear output angular position |
θM | The loading machine angular position |
θSx | Angular position of the differential gear output |
θW | the wheel-hub angular position |
ωM | Motor angular speed |
ωSx | Angular speed of the differential gear output |
ωW | Wheel rotational speed |
References
- Bauer, R. Neues Regelkonzept für die dynamische Antriebsstrangprüfen. In 17. Steirisches Seminar Über Regelungs-Technik und Prozessautomatisierung; Graz University of Technology: Graz, Austria, 2011; pp. 104–116. [Google Scholar]
- Bauer, R. New Methodology for Dynamic Drive Train Testing; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2011; pp. 1–6. [Google Scholar]
- Nehlsen, M.; Jedicke, F.; Bogner, E.; Schöggl, P. Fahrbarkeitsuntersuchungen auf dem rollenprüfstand. ATZ Automob. Z. 2006, 108, 376–381. [Google Scholar] [CrossRef]
- Weber, S.; Dursun, Y.; Kirschbaum, F.; Jakobi, R.; Bäker, B.; Fischer, J. Investigations of the process of road matching on powertrain test rigs. In Internationales Stuttgarter Symposium; Springer: Stuttgart, Germany, 2017; pp. 1247–1261. [Google Scholar]
- Schenk, J. Prüfplattform Für Mechatronisch Ausgestattete Fahrzeuge in Entwicklung und Produktion. 2007. Available online: http://publications.rwth-aachen.de/record/49934/files/Schenk_Jan.pdf (accessed on 16 November 2022).
- Nordin, M.; Gutman, P.O. Controlling mechanical systems with backlash—A survey. Automatica 2002, 38, 1633–1649. [Google Scholar] [CrossRef]
- Fietzek, R.; Rinderknecht, S. Car-in-the-Loop Complete Vehicle Test Rig. SAE Int. J. Passeng. Cars-Mech. Syst. 2015, 8, 476–481. [Google Scholar] [CrossRef]
- Gröll, L. Moderne Regelungskonzepte I—Lecture Notes; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2015. [Google Scholar]
- Hohmann, S. Systemdynamik und Regelungstechnik—Lecture Notes; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2017. [Google Scholar]
- Saarakkala, S.E.; Hinkkanen, M. State-space speed control of two-mass mechanical systems: Analytical tuning and experimental evaluation. IEEE Trans. Ind. Appl. 2014, 50, 3428–3437. [Google Scholar] [CrossRef]
- Fietzek, R. Modellbildung, Regelung und Realisierung Eines Neuartigen Konzepts für Einen Gesamtfahrzeugprüfstand, 1st ed.; Shaker: Albany, NY, USA, 2014. [Google Scholar]
- Szabat, K.; Orlowska-Kowalska, T. Vibration suppression in a two-mass drive system using PI speed controller and additional feedbacks—Comparative study. IEEE Trans. Ind. Electron. 2007, 54, 1193–1206. [Google Scholar] [CrossRef]
- Thomsen, S.; Hoffmann, N.; Fuchs, F.W. PI control, PI-based state space control, and model-based predictive control for drive systems with elastically coupled loads-A comparative study. IEEE Trans. Ind. Electron. 2011, 58, 3647–3657. [Google Scholar] [CrossRef]
- Saarakkala, S.E.; Hinkkanen, M.; Zenger, K. Speed control of two-mass mechanical loads in electric drives. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition, ECCE 2012, Raleigh, NC, USA, 15–20 September 2012; pp. 1246–1253. [Google Scholar]
- Zhang, G.; Furusho, J. Speed control of two-inertia system by PI/PID control. IEEE Trans. Ind. Electron. 2000, 47, 603–609. [Google Scholar] [CrossRef]
- Szabat, K.; Orlowska-Kowalska, T. Application of the Kalman filters to the high-performance drive system with elastic coupling. IEEE Trans. Ind. Electron. 2012, 59, 4226–4235. [Google Scholar] [CrossRef]
- Szabat, K.; Orlowska-Kowalska, T. Adaptive control of two-mass system using nonlinear extended Kalman Filter. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Paris, France, 6–10 November 2006; pp. 1539–1544. [Google Scholar]
- Ji, J.K.; Sul, S.K. Kalman Filter and LQ Based Speed Controller for Torsional Vibration Suppression in a 2-Mass Motor Drive System. IEEE Trans. Ind. Electron. 1995, 42, 564–571. [Google Scholar]
- Beineke, S.; Schuette, F.; Grotstollen, H. Comparison of Methods for State Estimation and Online Identification in Speed and Position Control Loops. 1997. Available online: https://www.semanticscholar.org/paper/COMPARISON-OF-METHODS-FOR-STATE-ESTIMATION-AND-IN-Beineke-Sch%C3%BCtte/afb1259a49ce983090adccafa53f4f1d29e86686?utm_source=direct_link (accessed on 9 November 2023).
- Zhang, R.; Tong, C. Torsional vibration control of the main drive system of a rolling mill based on an extended state observer and linear quadratic control. JVC/J. Vib. Control 2006, 12, 313–327. [Google Scholar] [CrossRef]
- El-Haji, M. Ontologie-Basierte Definition von Anforderungen an Validierungswerkzeuge in der Fahrzeugtechnik; KIT Scientific Publishing: Karlsruhe, Germany, 2016. [Google Scholar] [CrossRef]
- Pillas, J. Modellbasierte Optimierung Dynamischer Fahrmanöver Mittels Prüfständen; Shaker: Albany, NY, USA, 2017; Available online: https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8440-5420-0 (accessed on 16 November 2022).
- Forstinger, M. Modelling, Simulation, and Control of Power Train Test Beds. 2017. Available online: https://diglib.tugraz.at/download.php?id=5bebd9d691234&location=browse (accessed on 14 November 2022).
- Forstinger, M.; Bauer, R.; Hofer, A.; Rossegger, W. Multivariable control of a test bed for differential gears. Control Eng. Pract. 2016, 57, 18–28. [Google Scholar] [CrossRef]
- Gauterin, F. Automotive Engineering I—Lecture Notes; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2017. [Google Scholar]
- Gao, Z.; LaClair, T.; Ou, S.; Huff, S.; Wu, G.; Hao, P.; Boriboonsomsin, K.; Barth, M. Evaluation of electric vehicle component performance over eco-driving cycles. Energy 2019, 172, 823–839. [Google Scholar] [CrossRef]
- Petersen, M.R.; Starkey, J.M. Nonlinear Vehicle Performance Simulation with Test Correlation and Sensitivity Analysis; SAE Technical Papers; SAE International: Warrendale, PA, USA, 1996; pp. 643–653. [Google Scholar]
- Hu, J.; Peng, T.; Jia, M.; Yang, Y.; Guan, Y. Study on electromechanical coupling characteristics of an integrated electric drive system for electric vehicle. IEEE Access 2019, 7, 166493–166508. [Google Scholar] [CrossRef]
- Scamarcio, A.; Metzler, M.; Gruber, P.; de Pinto, S.; Sorniotti, A. Comparison of Anti-Jerk Controllers for Electric Vehicles with On-Board Motors. IEEE Trans. Veh. Technol. 2020, 69, 10681–10699. [Google Scholar] [CrossRef]
- Ineichen, L. Konzeptvergleich zur Bekämpfung der Torsionsschwingungen im Antriebsstrang Eines Kraftfahrzeugs; KIT Scientific: Karlsruhe, Germany, 2013. [Google Scholar] [CrossRef]
- Harnefors, L.; Nee, H.P. Model-based current control of ac machines using the internal model control method. IEEE Trans. Ind. Appl. 1998, 34, 133–141. [Google Scholar] [CrossRef]
- Muszynski, R.; Deskur, J. Damping of torsional vibrations in high-dynamic industrial drives. IEEE Trans. Ind. Electron. 2010, 544–552. [Google Scholar] [CrossRef]
- Fietzek, R.; Rinderknecht, S. Observer validation and model based control of a two mass oscillator with backlash. In Proceedings of the IEEE International Conference on Mechatronics and Automation (IEEE ICMA 2013), Takamatsu, Japan, 4–7 August 2013. [Google Scholar] [CrossRef]
- Thomsen, S.; Fuchs, F.W. Speed control of torsional drive systems with backlash. In Proceedings of the 13th European Conference on Power Electronics and Applications (EPE ’09), Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
- Ogata, K. Modern Control Engineering, 5th ed.; Prentice Hall: London, UK, 2009. [Google Scholar]
- Astrom, K.J.; Murray, R.M. Feedback Systems—An Introduction for Scientists and Engineers; Princeton University Press: London, UK, 2010. [Google Scholar]
- Orlowska-Kowalska, T.; Szabat, K. Neural-Network application for mechanical variables estimation of a two-mass drive system. IEEE Trans. Ind. Electron. 2007, 54, 1352–1364. [Google Scholar] [CrossRef]
- Ballotta, L. Complete Nyquist Plot on Logarithmic Scale. 2021. Available online: https://github.com/lucaballotta/NyquistLog (accessed on 8 November 2023).
- Segovia, V.R.; Hägglund, T.; Åström, K.J. Measurement noise filtering for PID controllers. J. Process Control 2014, 24, 299–313. [Google Scholar] [CrossRef]
Feature | Value |
---|---|
Maximum allowable vehicle mass | 12,000 [kg] |
Maximum allowable wheel load | 3000 [kg] |
Wheelbase range | 1.8–4.9 [m] |
Vehicle’s track width range | 1.2–3.9 [m] |
Maximum loading machine speed | 2000 [RPM] |
Nominal loading machine torque | 2500 [N.m] |
Nominal loading machine power | 209 [kW] |
Steering angle range at the front wheels | ±20 [degree] |
Maximum steering load torque at the front wheels | 1000 [N.m] |
Maximum air speed of the portable airstream simulator | 135 [km/h] |
Element | Value | Unit | References |
---|---|---|---|
Powertrain motor inertia (JE) | 0.03 | Kg·m2 | [26] |
Wheel hub inertia (JW) | 0.124 | kg·m2 | [27] |
Axle inertia (JAx) | 3.7 × 10−4 | kg·m2 | [27] |
Differential inertia (JD) | 1 × 10−2 | kg·m2 | [26,27,28] |
Gearbox inertia (JG) | 0.0524 | kg·m2 | [27] |
Gearbox transmission ratio (ig) | 4 | - | Technical data |
Differential transmission ratio (id) | 2.5 | - | Technical data |
Loading machine inertia (JM) | 0.6 | kg·m2 | Technical data |
CV shaft inertia (JS) | 0.0243 | kg·m2 | Technical data |
CV shaft stiffness (KS) | 1715 | N.m/rad | Technical data |
CV shaft internal damping (DS) | 5.99 | N.m.s/rad | Technical data |
Axle stiffness (KAx) | 7700 | N.m/rad | [29] |
Axle internal damping (DAx) | 3.57 | N.m.s/rad | [30] |
Coulomb friction constant (MF0) | 0.5 | N.m | [23] |
Friction moment factor (kM) | 0.06 | - | [23] |
Viscous friction factor (k∆ω) | 0.06 | - | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhanouti, M.; Gauterin, F. Robust Speed Control of a Multi-Mass System: Analytical Tuning and Sensitivity Analysis. Appl. Sci. 2023, 13, 13268. https://doi.org/10.3390/app132413268
Alhanouti M, Gauterin F. Robust Speed Control of a Multi-Mass System: Analytical Tuning and Sensitivity Analysis. Applied Sciences. 2023; 13(24):13268. https://doi.org/10.3390/app132413268
Chicago/Turabian StyleAlhanouti, Muhammed, and Frank Gauterin. 2023. "Robust Speed Control of a Multi-Mass System: Analytical Tuning and Sensitivity Analysis" Applied Sciences 13, no. 24: 13268. https://doi.org/10.3390/app132413268
APA StyleAlhanouti, M., & Gauterin, F. (2023). Robust Speed Control of a Multi-Mass System: Analytical Tuning and Sensitivity Analysis. Applied Sciences, 13(24), 13268. https://doi.org/10.3390/app132413268