The Influence of Low-Pressure Plasma Treatments on the Lap Shear Strength of Laser-Joined AISI 304 Hybrids with Polypropylene and Polyamide 6.6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser Setup
2.3. Low-Pressure Plasma Setup
2.4. Contact Angle and Surface Free Energy Measurement
2.5. Mechanical Testing and Microstructural Analysis
3. Results and Discussion
3.1. Identification of the Joining Parameters
3.2. Surface Free Energy
3.3. Influence of the Plasma Treatment on the Lap Shear Strength
4. Conclusions
- Nonpolar plastics, such as the polypropylene used, require sufficient mechanical adhesion when employed in a laser joining process with metals. No plastic residue was detectable on the fractured surface. The maximum lap shear strength of 4.26 MPa was achieved for sandblasted AISI304–polypropylene laser-joined hybrids at a line energy of 81 J mm−1.
- Polyamide 6.6 hybrids can be joined without mechanical adhesion on smooth surfaces. Adhesively fractured samples leave residues on the steel surface. Higher line energies can induce cohesive failure within the plastic sample. At 158 J mm−1, the cold–rolled AISI 304–polyamide 6.6 hybrids achieved 2.85 MPa with an adhesive failure mode.
- Low-pressure plasma treatments with argon, oxygen and water as plasma gases increase the surface free energy significantly. The disperse and polar values calculated by the OWRK method were at the same level at 180 s treatment time, elevating the surface free energy by a factor of 2.4 for polypropylene and 2.3 for polyamide 6.6 to ca. 80 mN m−1.
- The low-pressure plasma-treated polyamide 6.6 samples exhibited slightly varying lap shear strengths, ranging from +2.7% to −12.9%, depending on the plasma gas used. The variation was in the range of the untreated samples. The drying effect of the low-pressure treatment increased the number of cohesively failed samples. This also led to a more fractured appearance of the residue on the steel sample.
- The lap shear strength of the plasma-treated polypropylene samples decreased by 30.8% for argon plasma, 42.7% for water plasma and 53.3% for oxygen plasma. The decline was attributed to over-aging and the formation of low-molecular-weight oxidized materials on the surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Gao, X.; Zhang, Y. Research Progress on Characterization and Regulation of Forming Quality in Laser Joining of Metal and Polymer, and Development Trends of Lightweight Automotive Applications. Metals 2022, 12, 1666. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, X.; Zhang, Y.; Ma, B. Laser joining technology of polymer-metal hybrid structures—A review. J. Manuf. Process. 2022, 79, 934–961. [Google Scholar] [CrossRef]
- Lambiase, F.; Scipioni, S.I.; Lee, C.-J.; Ko, D.-C.; Liu, F. A State-of-the-Art Review on Advanced Joining Processes for Metal-Composite and Metal-Polymer Hybrid Structures. Materials 2021, 14, 1890. [Google Scholar] [CrossRef]
- Lambiase, F. Joinability of different thermoplastic polymers with aluminium AA6082 sheets by mechanical clinching. Int. J. Adv. Manuf. Technol. 2015, 80, 1995–2006. [Google Scholar] [CrossRef]
- Lambiase, F. Mechanical behaviour of polymer–metal hybrid joints produced by clinching using different tools. Mater. Des. 2015, 87, 606–618. [Google Scholar] [CrossRef]
- Abibe, A.B.; Amancio-Filho, S.T.; dos Santos, J.F.; Hage, E. Mechanical and failure behaviour of hybrid polymer–metal staked joints. Mater. Des. 2013, 46, 338–347. [Google Scholar] [CrossRef]
- Feraboli, P.; Masini, A. Development of carbon/epoxy structural components for a high performance vehicle. Compos. Part B Eng. 2004, 35, 323–330. [Google Scholar] [CrossRef]
- Sarlin, E.; Heinonen, E.; Vuorinen, J.; Vippola, M.; Lepistö, T. Adhesion properties of novel corrosion resistant hybrid structures. Int. J. Adhes. Adhes. 2014, 49, 51–57. [Google Scholar] [CrossRef]
- Sadowski, T.; Golewski, P.; Zarzeka-Raczkowska, E. Damage and failure processes of hybrid joints: Adhesive bonded aluminium plates reinforced by rivets. Comput. Mater. Sci. 2011, 50, 1256–1262. [Google Scholar] [CrossRef]
- Lugauer, F.P.; Kandler, A.; Meyer, S.P.; Wunderling, C.; Zaeh, M.F. Induction-based joining of titanium with thermoplastics. Prod. Eng. Res. Devel. 2019, 13, 409–424. [Google Scholar] [CrossRef]
- Yeh, R.-Y.; Hsu, R.-Q. Development of ultrasonic direct joining of thermoplastic to laser structured metal. Int. J. Adhes. Adhes. 2016, 65, 28–32. [Google Scholar] [CrossRef]
- Cenigaonaindia, A.; Liébana, F.; Lamikiz, A.; Echegoyen, Z. Novel Strategies for Laser Joining of Polyamide and AISI 304. Phys. Procedia 2012, 39, 92–99. [Google Scholar] [CrossRef]
- Bergmann, J.P.; Stambke, M. Potential of Laser-manufactured Polymer-metal hybrid Joints. Phys. Procedia 2012, 39, 84–91. [Google Scholar] [CrossRef]
- Tillmann, W.; Elrefaey, A.; Wojarski, L. Toward process optimization in laser welding of metal to polymer. Prozessoptimierung beim Laserstrahlschweißen von Metall mit Kunststoff. Mater. Werkstofftech. 2010, 41, 879–883. [Google Scholar] [CrossRef]
- Chen, Y.J.; Yue, T.M.; Guo, Z.N. Combined effects of temperature field and ultrasonic vibration on bubble motion in laser joining of plastic to metal. J. Mater. Process. Technol. 2021, 288, 116846. [Google Scholar] [CrossRef]
- Kawahito, Y.; Tange, A.; Kubota, S.; Katayama, S. Development of direct laser joining for metal and plastic. In International Congress on Applications of Lasers & Electro-Optics; ICALEO® 2006: 25th International Congress on Laser Materials Processing and Laser Microfabrication, Scottsdale, ZA, USA, 30 October–2 November 2006; Laser Institute of America: Orlando, FL, USA, 2006; p. 604. ISBN 978-0-912035-85-7. [Google Scholar]
- Chen, Y.J.; Yue, T.M.; Guo, Z.N. A new laser joining technology for direct-bonding of metals and plastics. Mater. Des. 2016, 110, 775–781. [Google Scholar] [CrossRef]
- Gao, M.; Liao, W.; Chen, C. Improving the interfacial bonding strength of dissimilar PA66 plastic and 304 stainless steel by oscillating laser beam. Opt. Laser Technol. 2021, 138, 106869. [Google Scholar] [CrossRef]
- Schricker, K.; Samfaß, L.; Grätzel, M.; Ecke, G.; Bergmann, J.P. Bonding mechanisms in laser-assisted joining of metal-polymer composites. J. Adv. Join. Process. 2020, 1, 100008. [Google Scholar] [CrossRef]
- Katayama, S.; Kawahito, Y. Laser direct joining of metal and plastic. Scr. Mater. 2008, 59, 1247–1250. [Google Scholar] [CrossRef]
- Hirchenhahn, P.; Al-Sayyad, A.; Bardon, J.; Felten, A.; Plapper, P.; Houssiau, L. Highlighting Chemical Bonding between Nylon-6.6 and the Native Oxide from an Aluminum Sheet Assembled by Laser Welding. ACS Appl. Polym. Mater. 2020, 2, 2517–2527. [Google Scholar] [CrossRef]
- Hirchenhahn, P.; Al-Sayyad, A.; Bardon, J.; Plapper, P.; Houssiau, L. Binding Mechanisms Between Laser-Welded Polyamide-6.6 and Native Aluminum Oxide. ACS Omega 2021, 6, 33482–33497. [Google Scholar] [CrossRef] [PubMed]
- Amne Elahi, M.; Koch, M.; Bardon, J.; Addiego, F.; Plapper, P. Failure mechanism analysis based on laser-based surface treatments for aluminum-polyamide laser joining. J. Mater. Process. Technol. 2021, 298, 117318. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, X.; Ma, B.; Zhang, Y. Interface Formation and Bonding Mechanisms of Laser Welding of PMMA Plastic and 304 Austenitic Stainless Steel. Metals 2021, 11, 1495. [Google Scholar] [CrossRef]
- Al-Sayyad, A.; Bardon, J.; Hirchenhahn, P.; Mertz, G.; Haouari, C.; Laurent, H.; Plapper, P. Influence of laser ablation and plasma surface treatment on the joint strength of laser welded aluminum-polyamide assemblies. In Proceedings of the Journées Nationales des Procédés Laser pour l’Industrie––JNPLI 2017, Strassbourg, France, 13–14 September 2017. [Google Scholar]
- Friedrich, J.; Friedrich, J.G. The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design; Wiley-VCH-Verlag: Weinheim, Germany, 2012; ISBN 978-3-527-64803-0. [Google Scholar]
- Mandolfino, C. Polypropylene surface modification by low pressure plasma to increase adhesive bonding: Effect of process parameters. Surf. Coat. Technol. 2019, 366, 331–337. [Google Scholar] [CrossRef]
- Van der Straeten, K.M. Laser-Based Joining of Plastic-Metal Hybrid Joints by Means of Self-Organizing Microstructures; RWTH Aachen University: Aachen, Germany, 2021. [Google Scholar]
- Habenicht, G. Kleben: Grundlagen, Technologien, Anwendungen: Mit 37 Tabellen, 5., erw. und Aktualisierte Aufl.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-26273-2. [Google Scholar]
- Plasma Technology GmbH. SmartPlasma 2–Plasma Technology. Available online: https://www.plasmatechnology.de/smartplasma-2.html (accessed on 26 November 2023).
- Awaja, F.; Gilbert, M.; Kelly, G.; Fox, B.; Pigram, P.J. Adhesion of polymers. Prog. Polym. Sci. 2009, 34, 948–968. [Google Scholar] [CrossRef]
- DIN EN ISO 19403-2; Beschichtungsstoffe–Benetzbarkeit–Teil 2: Bestimmung der Freien Oberflächenenergie Fester Oberflächen Durch Messung des Kontaktwinkels (ISO/DIS 19403-2:2023). Deutsche und Englische Fassung prEN ISO 19403-2:2023. DIN Deutsches Institut für Normung e.V.: Berlin, Germany; Beuth Verlag GmbH: Berlin, Germany, 2023.
- Fortunato, A.; Cuccolini, G.; Ascari, A.; Orazi, L.; Campana, G.; Tani, G. Hybrid metal-plastic joining by means of laser. Int. J. Mater. Form. 2010, 3, 1131–1134. [Google Scholar] [CrossRef]
- Polášková, K.; Klíma, M.; Jeníková, Z.; Blahová, L.; Zajíčková, L. Effect of Low Molecular Weight Oxidized Materials and Nitrogen Groups on Adhesive Joints of Polypropylene Treated by a Cold Atmospheric Plasma Jet. Polymers 2021, 13, 4396. [Google Scholar] [CrossRef]
- Du, H.; Komuro, A.; Ono, R. Quantitative and selective study of the effect of O radicals on polypropylene surface treatment. Plasma Sources Sci. Technol. 2023, 32, 75013. [Google Scholar] [CrossRef]
- Baur, E.; Osswald, T.A.; Rudolph, N. Saechtling Kunststoff Taschenbuch, [Komplett Überarb., Aktualisiert und zum Ersten Mal in Farbe], 31st ed.; Hanser: München, Germany, 2013; ISBN 978-3-446-43729-6. [Google Scholar]
- Scheik, S. Untersuchungen des Verbundverhaltens von Thermisch Direkt Gefügten Metall-Kunststoffverbindungen unter Veränderlichen Umgebungsbedingungen. Ph.D. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany, 2016. [Google Scholar]
Surface | Rz [µm] | |
---|---|---|
X | s | |
Sand blasted | 14.69 | 1.72 |
Cold-rolled | 1.44 | 0.35 |
Plastic | Laser Power [W] | Scanning Speed [mm/s] | Line Energy [J/mm] | ||
---|---|---|---|---|---|
Polyamide 6.6 | 225, 237.5, 250 | 1, 1.5, 2 | 225 | 238 | 250 |
150 | 158 | 167 | |||
113 | 119 | 125 | |||
Polypropylene | 150, 162.5, 175 | 1.5, 2, 2.5 | 100 | 108 | 117 |
75 | 81 | 88 | |||
60 | 65 | 70 |
Liquid | [mN m−1] | [mN m−1] | [mN m−1] |
---|---|---|---|
Water | 72.8 | 51 | 21.8 |
Diiodomethane | 50.8 | 50.8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tillmann, W.; Wojarski, L.; Hopmann, C.; Fatherazi, P.; Timmer, C. The Influence of Low-Pressure Plasma Treatments on the Lap Shear Strength of Laser-Joined AISI 304 Hybrids with Polypropylene and Polyamide 6.6. Appl. Sci. 2023, 13, 13275. https://doi.org/10.3390/app132413275
Tillmann W, Wojarski L, Hopmann C, Fatherazi P, Timmer C. The Influence of Low-Pressure Plasma Treatments on the Lap Shear Strength of Laser-Joined AISI 304 Hybrids with Polypropylene and Polyamide 6.6. Applied Sciences. 2023; 13(24):13275. https://doi.org/10.3390/app132413275
Chicago/Turabian StyleTillmann, Wolfgang, Lukas Wojarski, Christian Hopmann, Patricia Fatherazi, and Christian Timmer. 2023. "The Influence of Low-Pressure Plasma Treatments on the Lap Shear Strength of Laser-Joined AISI 304 Hybrids with Polypropylene and Polyamide 6.6" Applied Sciences 13, no. 24: 13275. https://doi.org/10.3390/app132413275
APA StyleTillmann, W., Wojarski, L., Hopmann, C., Fatherazi, P., & Timmer, C. (2023). The Influence of Low-Pressure Plasma Treatments on the Lap Shear Strength of Laser-Joined AISI 304 Hybrids with Polypropylene and Polyamide 6.6. Applied Sciences, 13(24), 13275. https://doi.org/10.3390/app132413275